Sedna Programmer’s Guide

Contents
1 Client Application Programming Interfaces 3
1.1 Java APL. 3
1.1.1 Sessions 3
1.1.2 Transactions Management 4
1.1.3 Statements oo 5
1.14 Results. 6
1.1.5 Exceptions o 7
1.1.6 Code Example. 7
1.2 CAPI 10
1.2.1 Errors Handling 11
1.2.2 Connecting to a Database 11
1.2.3 Setting Session Options 13
1.2.4 Transactions Management 16
1.2.5 Getting Connection and Transaction Status 18
1.2.6 Executing Queries and Updates 18
1.2.7 Loading Data 21
1.2.8 Example Code. 23
1.3 Scheme API 25
1.3.1 Sessions 26
1.3.2 Manage Transactions 26
1.3.3 Executing Queries and Updates 27
1.3.4 Bulk Load from Stream 29
1.3.5 Higher-level Function for a Transaction 29
1.3.6 Error handling 29
1.3.7 Code Example. 30
2 Database Language 32
2.1 XQuery Support 32
2.2 XQuery Options and Extensions 33
2.2.1 Controlling Serialization 33

1

2.3
24

2.5

2.6

2.7

2.2.2 Value index-scan Functions 33

2.2.3 Full-Text Search Functions 34
2.24 SQL Connection 35
2.2.5 External Functions 41
2.2.6 Runtime Properties 45
Update Language 45
Bulk Loado 49
2.4.1 CDATA section preserving 50
Data Definition Language 51
2.5.1 Managing Standalone Documents 51
2.5.2 Managing Collections 51
2.5.3 Managing Value Indices 53
2.5.4 Managing Full-Text Indices 95
2.5.5 Managing Modules o7
2.5.6 Retrieving Metadata 58
XQuery Triggerso 29
2.6.1 Trigger Examples 62
Debug and Profile Facilities 64
271 Traceo 65
272 DebugMode. 66
2.7.3 Explain Query. 67
2.74 Profile Query L 69

1 Client Application Programming Inter-
faces

The Sedna client application programming interfaces (APIs) provides pro-
grammatic access to Sedna from client applications developed in host pro-
gramming languages. This section describes the client APIs distributed with
Sedna.

1.1 Java API

The Java API provides programmatic access to XML data from the Java
programming language. Using the Java API, applications written in the
Java can access one or more databases of the Sedna DBMS and manipulate
database data using the database language described in Section 2.

Application working with the Sedna DBMS through the Java API oper-
ates with the following notions of the Java API: session, transaction, state-
ment, result.

1.1.1 Sessions

To start working with Sedna application has to open a session via establish-
ing an authenticated connection with the server. The Java API defines the
SednaConnection interface to represent a session.

To open a session application uses static method getConnection of the
DatabaseManager class.

SednaConnection getConnection(String url,
String DBName,
String user,
String password)
throws DriverException

Parameters:

url - the name of the computer where the Sedna DBMS is running. This
parameter may contain a port number. If the port number is not specified, the
default port number (5050) is used.

DBName - the name of the database to connect.

user - user name.

password - user password.

If the connection is established and authentication succeeds the method re-
turns an object that implements the SednaConnection interface. Otherwise,
DriverException is thrown.

Application can close session using the close method of the SednaConnection
interface.

public void close() throws DriverException

If the server does not manage to close connection properly the close method
throws DriverException.

The isClosed method retrieves whether this connection has been closed or
not. A connection is closed if the method close has been called on it or if certain
fatal errors have occurred.

public boolean isClosed()

Setting connection into debug mode allows getting debug information when
XQuery query fails due to some reason (see 2.7.2 for details). To set the connection
into debug mode use setDebugMode method of SednaConnection interface:

public void setDebugMode(boolean debug)

Parameters:

debug - set to true to turn debug mode on; set to false to turn debug mode
off. Debug mode is off by default.

Sedna supports fn:trace function for debugging purpose also (see 2.7.1 for
details). By default trace output is included into XQuery query result. You can
turn trace output on/off using setTraceOutput method of the SednaConnection
interface:

public void setTraceOutput(boolean doTrace)

Parameters:
doTrace - set to true to turn trace output on; set to false to turn trace
output off. Trace output is on by default.

1.1.2 Transactions Management

Application can execute queries and updates against specified database only in the
scope of a transaction. That is, once a session has been opened, application can
begin a transaction, execute statements and commit (or rollback) this transaction.

In the session transactions are processed sequentially. That is, application
must commit a begun transaction before beginning a new one.

To specify transaction boundaries application uses methods of the
SednaConnection interface: begin, commit.

The begin method begins a new transaction.

public void begin() throws DriverException

4

If the transaction has not begun successfully the begin method throws
DriverException.
The commit method commits a transaction.

public void commit() throws DriverException

If the transaction has not been committed successfully the commit method
throws DriverException.
To rollback transaction the rollback method is used.

public void rollback() throws DriverException

If the transaction has not been rollback successfully the rollback method
throws DriverException.

The Java. API does not provide auto-commit mode for transactions. That is,
every transaction must be explicitly started (by means of begin) and committed
(by means of commit). If session is closed (by means of close) before a trans-
action committed, server does rollback for that transaction, and close throws
DriverException.

1.1.3 Statements

The SednaStatement interface provides methods for loading documents into the
database, executing statements of the database language defined in Section 2 and
retrieving results that statements produce. SednaStatement object is created
using the createStatement method of the SednaConnection interface:

public SednaStatement createStatement()
throws DriverException

SednaStatement object may only be created on an open connection. Other-
wise, the createStatement method throws DriverException.
To load the document into the database use:

public void loadDocument (InputStream in,
String doc_name)
throws DriverException, IOException

The in parameter is an input stream to get the document from. The doc_name
parameter is the name for this document in the database.
To load the document into the specified collection of the database use:

public void loadDocument (InputStream in,
String doc_name,
String col_name)

throws DriverException, IOException

The in parameter is an input stream to get the document from. The doc_name
parameter is the name for this document in the database. The col_name parameter
is the name of the collection to load the document into.

To execute a statement the execute methods of the SednaStatement are used.

public boolean execute(String queryText)
throws DriverException

The queryText parameter contains the text of the statement.

public boolean execute(InputSteram in)
throws DriverException

The in parameter is some input stream to read an XQuery statement from.

Some statements (such as XQuery statements or the retrieve metadata com-
mand) produce the result. In case of such statements, the execute methods return
true and the result can be obtained as described in Section 1.1.4. In case of state-
ments that do not produce the result (such as updates or bulk load), the execute
methods return false.

The results of XQuery queries to the Sedna DBMS can be represented either
in XML or SXML [11]. To specify the type of the result use the following extended
versions of the execute method:

boolean execute(InputStream in,
ResultType resultType)
throws DriverException, IOException;

boolean execute(String queryText,
ResultType resultType)
throws DriverException, IOException;

The resultType parameter is either ResultType.XML or ResultType.SXML.

1.1.4 Results

The SednaSerializedResult interface represents the result of the statement eval-
uation. Application can obtain the result using the getSerializedResult method
of the SednaStatement interface.

public SednaSerializedResult getSerializedResult()

The result of the non-XQuery statement evaluation is retrieved as a sequence
with only one item, where the item is a string. For example, in case of the re-
trieve descriptive schema command the result is a sequence with an item that is
a descriptive schema represented as a string. The result of the XQuery statement

evaluation is retrieved as a sequence of items, where every item is represented as
a string.

Application can use the next methods of the SednaSerializedResult inter-
face to iterate over the result sequence:

public String next() throws DriverException

The method returns an item of the result sequence as a string. If the sequence
has ended it returns null. It throws DriverException in the case of error.

public int next(Writer writer) throws DriverException

The method writes an item of the result sequence to some output stream using
writer. It returns O if an item was retrieved and written successful, and 1 if the
result sequence has ended. It throws DriverException in the case of error.

Please, notice, that in the current version of the Sedna DBMS application
has to execute statements and use the results of their execution sequentially. To
explain this note, suppose application execute a statement, obtains a result of
that statement execution and iterates over this result. If, after that, application
executes next statement, it cannot iterate over the result of the previous statement
any more.

1.1.5 Exceptions

The DriverException class provides information about errors that occur while
application works with the Sedna DBMS through the Java API. DriverException
is also thrown when application loses its connection with the server.

1.1.6 Code Example

In this section we provide an example program that uses the Java API to work
with Sedna DBMS. This application connects to the Sedna DBMS, opens a ses-
sion. The session consists of one transaction. Application loads data from the file
region.xml and executes the XQuery statement. When statement is executed,
application drop the document, commits the transaction and closes the session.

import ru.ispras.sedna.driver.x*;
class Client {
public static void main(String args[]) {

SednaConnection con = null;
try {
/* Get a connection */
con = DatabaseManager.getConnection("localhost",

"testdb",
"SYSTEM",
"MANAGER") ;

/* Begin a new transaction */
con.begin();

/* Create statement */
SednaStatement st = con.createStatement();

/* Load XML into the database */
System.out.println("Loading data ...");

boolean res;

res = st.execute("LOAD ’C:/region.xml’ ’region’");

System.out.println("Document ’region.xml’ "+
"has been loaded successfully");

/* Execute query */

System.out.println("Executing query");

res = st.execute("doc(’region’)/*/*");

/* Print query results */
printQueryResults(st);

/* Remove document */
System.out.println("Removing document ...");
res = st.execute("DROP DOCUMENT ’region’");

System.out.println("Document ’region’ " +
"has been dropped successfully");
/* Commit current transaction */
con.commit();
}
catch(DriverException e) {
e.printStackTrace();
}
finally {
/* Properly close connection */
try { if(con != null) con.close(); }
catch(DriverException e) {
e.printStackTrace();
}
}

/* Pretty printing for query results */
private static void printQueryResults(SednaStatement st)
throws DriverException {
int count = 1;
String item;
SednaSerializedResult pr = st.getSerializedResult();
while ((item = pr.next()) != null) {
System.out.println(count + " item: " + item);
count++;
}
3
+

The full-version source code of this example program can be found at:

[win:] INSTALL_DIR\examples\apiljava\Client.java
[nix:] INSTALL_DIR/examples/api/java/Client.java

where INSTALL_DIR refers to the directory where Sedna is installed.
Before running the example make sure that the Sedna DBMS is installed and
do the following steps:

1. Start Sedna by running the following command:
se_gov

If Sedna is started successfully it prints ”GOVERNOR has been started in
the background mode”.

2. Create a new database testdb by running the following command:

se_cdb testdb

If the database is created successfully it prints ”The database 'testdb’ has
been created successfully”.

3. Start the testdb database by running the following command:
se_sm testdb

If the database is started successfully it prints ”SM has been started in the
background mode”.

You can compile and run the example following the steps listed below:

1. To compile the example, run the script:

[win:] Clientbuild.bat
[nix:] ./Clientbuild.sh

located in the same folder as Client. java.

2. To run the compiled example, use the script:

[win:] Client.bat
[nix:] ./Client.sh

located in the same folder as Client. java.

1.2 C API

libsedna is the C application programmer’s interface to Sedna XML DBMS. lib-
sedna is a set of library functions that allow client programs to access one or more
databases of Sedna XML DBMS and manipulate database data using database
language (XQuery and XUpdate) described in Section 2.

libsedna library is supplied with two header files: "libsedna.h", "sp_defs.h".
Client programs that use libsedna must include the header file libsedna.h, must link
with the libsedna library and provide the compiler with the path to the directory
where "libsedna.h", sp_defs.h files are stored.

For convenience three versions of 1ibsedna are provided on the Windows op-
erating system:

1. libsednamt.1lib - static multi-threaded version built with /MT option. Use
it if you compile your project with /MT|[d] option.

2. libsednamd.lib - static multi-threaded version built with /MD option. Use
it if you compile your project with /MD[d] option.

3. sednamt.dll - dynamic version. sednamt.lib is import library.

On Unix-like operating systems the following versions of libsedna are pro-
vided:

1. libsedna.so - dynamic shared library.
2. libsedna.a - static version of the library.

3. libsedna_pic.a - static version of the library with PIC enabled. You may
need it to build drivers for Sedna which are based on libsedna.

10

1.2.1 Errors Handling

C API provides set of functions for sessions and transactions management, query
and update statements execution, etc. If the function fails it returns negative
value. In this case application can obtain the error message and code which help
to understand the reason of the error occurred.

To get the last error message use SEgetLastErrorMsg function:

char* SEgetLastErrorMsg(SednaConnection* conn)
Parameters:

e conn - a pointer to an instance of the SednaConnection type (see 1.2.2,
Connecting to a Database section for details on how to obtain a connection
instance).

The function SEgetLastErrorCode returns the last error code occurred in the
session:

int SEgetLastErrorCode(struct SednaConnection *conn)
Parameters:

e conn - a pointer to an instance of the SednaConnection type (see 1.2.2,
Connecting to a Database section for details on how to obtain a connection
instance).

1.2.2 Connecting to a Database

Before working with Sedna an application has to declare variable of the
SednaConnection type and initialize it in the following manner:

struct SednaConnection conn = SEDNA_CONNECTION_INITIALIZER;

Note 1 The initialization with SEDNA_CONNECTION_INITIALIZER is mandatory
for Sedna version 0.5 and earlier.

To start working with Sedna an application has to open a session via estab-
lishing an authenticated connection with the server using SEconnect:

int SEconnect(SednaConnection* conn,
const charx* url,
const char* db_name,
const char* login,
const char* password)

11

Parameters:

e conn - is a pointer to an instance of SednaConnection type, that is associated
with a session. The instance of SednaConnection type is initialized by the
SEconnect if the session is open successfully.

e url - the name of the computer where the Sedna DBMS is running. This
parameter may contain a port number. If the port number is not specified,
the default port number (5050) is used.

e db_name - the name of the database to connect to.

e login - user login.

e password - user password.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_SESSION_OPEN - connection to the database is established, authenti-
cation passed successfully.

If the function fails, the return value is negative and session is not opened:

e SEDNA_AUTHENTICATION_FAILED - authentication failed.
e SEDNA_OPEN_SESSION_FAILED - failed to open session.
e SEDNA_ERROR - some error occurred.

To access multiple databases at one time or to better process its complex logic
an application can have several sessions open at one time.

When an application finished it’s work with the database, it must close the
session. SEclose finishes the session and closes the connection to the server.
SEclose also frees resources that were equipped by the call to SEconnect function,
that is for every successful call to SEconnect there must be a call to SEclose in
the client program. You must call SEclose both when application finishes its work
with the database, and when application cannot work with the database anymore
due to some error.

int SEclose(SednaConnection* conn)
Parameters:

e conn - a pointer to an instance of the SednaConnection type, associated with
a session to be closed.

Return values:

If the function succeeds, the return value is positive:
e SEDNA_SESSION_CLOSED - session closed successfully.
If the function fails, the return value is negative:

e SEDNA_CLOSE_SESSION_FAILED - session closed with errors.
e SEDNA_ERROR - some error occurred.

12

1.2.3 Setting Session Options

An application can set attributes that govern aspects of a session using
SEsetConnectionAttr:

int SEsetConnectionAttr(struct SednaConnection *conn,

enum SEattr attr,
const voidx* attrValue,
int attrValuelLength)

Parameters:

conn - a pointer to an instance of the SednaConnection type, associated with
a session to be closed.

attr - an attribute to set (one of the predefined Sedna connection attributes
listed below).

e attrValue - a pointer to the value to be associated with the attribute.
e attrValueLength - a length of the value in bytes.

Return values:

If the function succeeds, the return value is positive:

SEDNA_SET_ATTRIBUTE_SUCCEEDED - the attribute was set successfully.

If the function fails, the return value is negative:

SEDNA_ERROR - some error occurred.

Supported attributes:

SEDNA_ATTR_AUTOCOMMIT Autocommit mode is the default transaction man-
agement mode of the Sedna server (SEDNA_AUTOCOMMIT_OFF is the default
value of this attribute). Every XQuery or update statement is committed
or rolled back when it completes. If a statement completes successfully, it
is committed; if it encounters any error, it is rolled back. A connection to
an instance of the Sedna database operates in autocommit mode whenever
this default mode has not been overridden by setting this attribute into
SEDNA_AUTOCOMMIT_OFF value

Atrribute values Value size

SEDNA_ATTR_AUTOCOMMIT_ON,

SEDNA_ATTR_AUTOCOMMIT_OFF Qzeofﬁnt)

SEDNA_ATTR_SESSION_DIRECTORY connection attribute defines the
session directory. If this attribute is set, paths in the LOAD state-
ment 2.4 or LOAD MODULE are evaluated relative to the session directory.

Atrribute values | Size of value
path to directory | length of path

13

e SEDNA_ATTR_DEBUG connection attribute turns on/off query debug mode.
Query debug mode is off by default. Note: SEDNA_ATTR_DEBUG connection
attribute must be set only after SEconnect has been called on the conn.

Atrribute values Value size
SEDNA_ATTR_DEBUG_ON,
SEDNA_ATTR_DEBUG_OFF sizeof(int)

e SEDNA_ATTR_CONCURRENCY_TYPE connection attribute changes the
mode of the next transactions. Transaction can be set to run as
READ-ONLY (SEDNA_READONLY_TRANSACTION) or UPDATE-transaction
(SEDNA_UPDATE_TRANSACTION). READ-ONLY transactions have one major
benefit: they never wait for other transactions (they do not have to acquire
any document/collection locks). However they might access slightly obsolete
state of the database (for example, they probably would not see the most
recent committed updates). You should use READ-ONLY transactions in a
highly concurrent environment. Notice that the current transaction, if any,
will be forcefully committed.

Atrribute values Value size
SEDNA_READONLY_TRANSACTION,
SEDNA_UPDATE_TRANSACTION sizeof(int)

e SEDNA_ATTR_QUERY_EXEC_TIMEOUT connection attribute allows to set the
limit on query execution time. If set, for each next query in this session,
query execution will be stopped if it lasts longer than timeout set. In this
case transaction in bounds of which the query run is rollback. By default
(value 0) there is no any timeout for query execution, that is a query can be
executed as long as needed.

Atrribute values | Value size

time in seconds | sizeof(int)

e SEDNA_ATTR_MAX_RESULT_SIZE connection attribute allows to set the limit
on query result size. If this attribute is set, the server will cut the result
data if its size exceeds the specified limit. By default, result data that is
passed from server in response to user query can be of unlimited size.

Atrribute values | Value size

size in bytes sizeof(int)

e SEDNA_LOG_AMOUNT connection attribute changes the mode of logical log-
ging for the following transactions in the same session. Transaction can
be set to run in full log mode (SEDNA_LOG_FULL) or reduced log mode
(SEDNA_LOG_LESS). The former means transaction writes much less log info
during bulk loads. Also, when such transaction commits the checkpoint is
made, which might greatly reduce recovery time. There is a caveat, however:
such transaction always runs in exclusive mode, which means there can be

14

no concurrent transactions. Before it starts it waits for other concurrent
transactions to finish. In turn, all other transactions will not start until
exlusive transaction finishes. You should use this option with care, since it
effectively stalls any concurrent activity. The main purpose of such transac-
tions is to bulk-load data. The other possible use-case includes transactions
performing heavy update operations. Since checkpoint will be made when
such transaction commits, it might reduce recovery time in case of database
crash. Otherwise, you should not use this option since you will not gain
anything. Notice also that the current transaction in the same session, if
any, will be forcefully committed. The default value for this attribute is
SEDNA_LOG_FULL.

Atrribute values Value size
SEDNA_LOG_LESS,
SEDNA_LOG_FULL | sizeof(int)

An application can retrieve current value of hte connection attributes using
SEgetConnectionAttr:

int SEgetConnectionAttr(struct SednaConnection *conn,
enum SEattr attr,
void* attrValue,
int* attrValuelength) ;

Parameters:

e conn - a pointer to an instance of the SednaConnection type, associated
with a session to be closed.

e attr - an attribute to retrieve.

e attrValue - a pointer to memory in which to return the current value of
the attribute specified by attr.

e attrValueLength - a length of the retrieved value in bytes.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_GET_ATTRIBUTE_SUCCEEDED - the attribute was retrieved successfully.
If the function fails, the return value is negative:

e SEDNA_ERROR - some error occurred.

To reset all connection attributes to default values use:

int SEresetAllConnectionAttr(struct SednaConnection *conn);

15

Parameters:

e conn - a pointer to an instance of the SednaConnection type, associated
with a session to be closed.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_RESET_ATTRIBUTES_SUCCEEDED - attributes has been reset success-
fully.

If the function fails, the return value is negative:

e SEDNA_ERROR - some error occurred.

1.2.4 Transactions Management

An application can execute queries and updates against the specified database
only in the scope of a transaction. That is, once a session has been opened, an
application can begin a transaction, execute statements and commit this trans-
action. In a session transactions are processed sequentially. That is, application
must commit an ongoing transaction before beginning a new one.

There are two ways to manage transactions in Sedna sessions: autocommit
mode and manual-commit mode:

e Autocommit mode. FEach individual statement is committed when it
completes successfully. When running in autocommit mode no other trans-
action management functions are needed. By default, Sedna sessions are run
in autocommit mode.

e Manual-commit mode. Transaction boundaries are specified explicitly
by means of SEbegin, SEcommit and SErollback functions. All statements
between the call to SEbegin and SEcommit/SErollback are included in the
same transaction.

An application can switch between the two modes using SEsetConnectionAttr
and SEgetConnectionAttr functions (see 1.2.3) for SEDNA_ATTR_AUTOCOMMIT at-
tribute.

To specify transaction boundaries application uses SEbegin, SEcommit and
SErollback functions. SEbegin function starts new transaction in the provided
session:

int SEbegin(SednaConnection* conn)

Parameters:

16

e conn - a pointer to an instance of the SednaConnection type.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_BEGIN_TRANSACTION_SUCCEEDED - transaction has been successfully
started.

If the function fails, the return value is negative:

e SEDNA_BEGIN_TRANSACTION_FAILED - failed to start a transaction.
e SEDNA_ERROR - some error occurred.

SEcommit function commits the current transaction:
int SEcommit(SednaConnection* conn)
Parameters:
e conn - a pointer to an instance of the SednaConnection type.

Return values:

If the function succeeds, the return value is positive:
e SEDNA_COMMIT_TRANSACTION_SUCCEEDED - transaction has been committed.
If the function fails, the return value is negative:

e SEDNA_COMMIT_TRANSACTION_FAILED - failed to commit transaction.
e SEDNA_ERROR - some error occurred.

SErollback function rollbacks the current transaction:
int SErollback(SednaCommection* conn)
Parameters:
e conn - a pointer to an instance of the SednaConnection type.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_ROLLBACK_TRANSACTION_SUCCEEDED - transaction has been roll-
backed.

If the function fails, the return value is negative:

e SEDNA_ROLLBACK_TRANSACTION_FAILED - failed to rollback transaction.
e SEDNA_ERROR - some error occurred.

17

1.2.5 Getting Connection and Transaction Status

An application can obtain the connection status by SEconnectionStatus function:
int SEconnectionStatus(SednaConnection* conn)
Parameters:

e comnn - a pointer to an instance of the SednaConnection type.

Return values:

e SEDNA_CONNECTION_OK - specified connection is open and functions ok.

e SEDNA_CONNECTION_CLOSED - specified connection is closed. This could be
either after the call to SEclose function, or before the call to SEconnect
function.

e SEDNA_CONNECTION_FAILED - specified connection has been failed. (Note:
in this case you should call SEclose function to release resources).

An application may obtain the transaction status by SEtransactionStatus
function:

int SEtransactionStatus(SednaConnection* conn)
Parameters:

e conn - a pointer to an instance of the SednaConnection type.
Return values:

e SEDNA_TRANSACTION_ACTIVE - specified connection runs transaction.

e SEDNA_NO_TRANSACTION - specified connection does not run transaction.
This could be for example when previous transaction has been committed
and a new one has not begun yet.

1.2.6 Executing Queries and Updates

There are two functions to execute a statement (query or update): SEexecute
function and SEexecuteLong function. First one reads statement from a C-string,
the second reads long statement from a provided file. To get trace (fn:trace
XQuery function) and debug information application may implement custom de-
bug handler and set it using function: SEsetDebugHandler.

int SEexecute(SednaConnection* conn, const char* query)

Parameters:

18

e conn - a pointer to an instance of the SednaConnection type.
e query - a null-terminated string with an XQuery or XUpdate statement.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_QUERY_SUCCEEDED - specified query succeeded and result data can be
retrieved.

e SEDNA_UPDATE_SUCCEEDED - specified update succeeded.

e SEDNA_BULK_LOAD_SUCCEEDED - specified update (bulk load 2.4) succeeded.

If the function fails, the return value is negative:

e SEDNA_QUERY_FAILED - specified query failed.

e SEDNA_UPDATE_FAILED - specified update failed.
e SEDNA_BULK_LOAD_FAILED - bulk load failed.

e SEDNA_ERROR - some error occurred.

If the statement is really long, and you prefer to pass it to the Sedna directly
from a file use SEexecuteLong function.

int SEexecutelong(SednaConnection* conn,
const char* query_file_path)

Parameters:

e conn - a pointer to an instance of the SednaConnection type.
e query_file - a path to the file with a statement to execute.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_QUERY_SUCCEEDED - specified query succeeded and result data can be
retrieved.

e SEDNA_UPDATE_SUCCEEDED - specified update succeeded.

e SEDNA_BULK_LOAD_SUCCEEDED - specified update (bulk load 2.4) succeeded.

If the function fails, the return value is negative:

SEDNA_QUERY_FAILED - specified query failed.
SEDNA_UPDATE_FAILED - specified update failed.
SEDNA_BULK_LOAD_FAILED - bulk load failed.
SEDNA_ERROR - some error occurred.

19

If SEexecute function or SEexecutelLong function return
SEDNA_QUERY_SUCCEEDED, the result data can be retrieved. The result of
XQuery query evaluation is a sequence of items, where every item is represented
as a string. Use the SEnext function to iterate over the sequence and SEgetData
function to retrieve the current item of the sequence.

int SEnext(SednaConnection* conn)
Parameters:
e conn - a pointer to an instance of the SednaConnection type.

Return values:
If the function succeeds, the return value is positive:

e SEDNA_NEXT_ITEM_SUCCEEDED - moving to the next item succeeded, and the
item can be retrieved.

If the function fails or the is no result items available to retrieve, the return value
is negative:

e SEDNA_NEXT_ITEM_FAILED - failed to get next item.

e SEDNA_RESULT_END - the result sequence is ended, no result data to retrieve.

e SEDNA_NO_ITEM - there was no succeeded query that produced the result
data, no result data to retrieve.

e SEDNA_ERROR - some error occurred.

SEgetData function retrieves current item from the result sequence:

int SEgetData(SednaConnection* conn,
charx*x buf,
int bytes_to_read)

Parameters:

e conn - a pointer to an instance of the SednaConnection type.

e buf - pointer to the buffer that receives the data got from the server.

e bytes_to_read - number of bytes to be read from the server into the buffer.
Return values:
If the function succeeds, the return value is non-negative:

e number of bytes actually read from the server and put into the buffer.

e zero - no data was read from the server and put into the buffer because of
the item end. (use SEnext to move to the next item of the result).

20

If the function fails, the return value is negative:

e SEDNA_GET_DATA_FAILED - failed to get data
e SEDNA_ERROR - some error occurred.

Since version 1.5 Sedna supports reporting tracing information (fn:trace
XQuery function). To handle tracing information while retrieving result data use
debug handler debug_handler_t and SEsetDebugHandler function:

void SEsetDebugHandler (struct SednaConnection *conn,
debug_handler_t debug_handler)

Parameters:

e conn - a pointer to an instance of the SednaConnection type.

e debug_handler - a pointer to your own defined function of the follow-
ing type: void (*debug_handler_t) (int subtype, const char *msg)
where subtype is a type of debug information (currently only
SEDNA_QUERY_TRACE_INFO is supported), msg is a buffer with debug infor-
mation.

For example the following debug handler prints out debug iformation to the
stdout:

void my_debug_handler(enum SEdebugType subtype,
const char *msg) {
printf ("TRACE: ");
printf ("subtype(%d), msg: %s\n", subtype, msg);
}

If the debug handler is not defined by the application, trace information is
ignored.

1.2.7 Loading Data

XML data can be loaded into a database using "LOAD" statement of the Data
Manipulation Language (see 2.4). Besides, libsedna library provides SEloadData
and SEendLoadData functions to load well-formed XML documents divided into
parts of any convenient size.

SEloadData functions loads a chunk of an XML document:

int SEloadData(SednaConnection* conn,
const char* buf,
int bytes_to_load,
const char* doc_name,
const char* col_name)

21

Parameters:

conn - a pointer to an instance of the SednaConnection type.

buf - a buffer with chunk of an XML document to load.

bytes_to_load - number of bytes to load.

doc_name - name of the document in a database the data loads to.
col_name - name of the collection in the case if document is loaded into the
collection, NULL if document is loaded as a standalone one.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_DATA_CHUNK_LOADED - chunk of an XML document loaded success-
fully.

If the function fails, the return value is negative:
e SEDNA_ERROR - some error occurred. Data is not loaded.

When the whole document is loaded using SEloadData, application must use
SEendLoadData to notify server that transfer of an XML document is finished:

int SEendLoadData(SednaConnection* conn)
Parameters:
e conn - a pointer to an instance of the SednaConnection type.

Return values:

If the function succeeds, the return value is positive:

e SEDNA_BULK_LOAD_SUCCEEDED - XML document was successfully loaded into
the database.

If the function fails, the return value is negative:

e SEDNA_BULK_LOAD_FAILED - failed to load XML document into the database.
e SEDNA_ERROR - some error occurred.

22

1.2.8 Example Code

#include "libsedna.h"
#include "stdio.h"

int handle_error(SednaConnection* conn,
const char* op,
int close_connection) {
printf("%s failed: \n¥%s\n", op, SEgetLastErrorMsg(conn)) ;
if (close_connection == 1) SEclose(conn);
return -1;

int main() {
struct SednaConnection conn = SEDNA_CONNECTION_INITIALIZER;
int bytes_read, res, value;
char buf[1024];

/* Turn off autocommit mode */

value = SEDNA_AUTOCOMMIT_OFF;

res = SEsetConnectionAttr(&conn, SEDNA_ATTR_AUTOCOMMIT,
(void*)&value, sizeof(int));

/* Connect to the database */
res = SEconnect(&conn, "localhost", "test_db",
"SYSTEM", "MANAGER");
if (res '= SEDNA_SESSION_OPEN)
return handle_error(&conn, "Connection", 0);

/* Begin a new transaction */
res = SEbegin(&conn);
if (res !'= SEDNA_BEGIN_TRANSACTION_SUCCEEDED)
return handle_error (&conn, "Transaction begin", 1);

/* Load file "region.xml" into the document "region" */
res = SEexecute(&conn, "LOAD ’region.xml’ ’region’");
if (res !'= SEDNA_BULK_LOAD_SUCCEEDED)

return handle_error(&conn, "Bulk load", 1);

/* Execute XQuery statement */
res = SEexecute(&conn, "doc(’region’)/*/*");
if (res !'= SEDNA_QUERY_SUCCEEDED)

return handle_error(&conn, "Query", 1);

23

/* Iterate and print the result sequence */
while((res = SEnext(&conn)) !'= SEDNA_RESULT_END) {
if (res == SEDNA_ERROR)
return handle_error(&conn, "Getting item", 1);

do {

bytes_read = SEgetData(&conn, buf, sizeof(buf) - 1);

if (bytes_read == SEDNA_ERROR)
return handle_error(&conn, "Getting item", 1);
buf [bytes_read] = ’\0’;
printf("%s\n", buf);
} while(bytes_read > 0);
}

/* Drop document "region" */
res = SEexecute(&conn, "DROP DOCUMENT ’region’");
if(res '= SEDNA_UPDATE_SUCCEEDED)

return handle_error(&conn, "Drop document", 1);

/* Commit transaction */

res = SEcommit (&conn);

if(res !'= SEDNA_COMMIT_TRANSACTION_SUCCEEDED)
return handle_error(&conn, "Commit", 1);

/* Close connection */
res = SEclose(&conn);
if (res '= SEDNA_SESSION_CLOSED)
return handle_error(&conn, "Close", 0);

return O;

The full version of this example program can be found in:

[win:] INSTALL_DIR\examples\apilc\Client.c
[nix:] INSTALL_DIR/examples/api/c/Client.c

Here INSTALL_DIR refers to the directory where Sedna is installed.
Before running the example make sure that the Sedna DBMS is installed and
do the following steps:

1. Start Sedna by running the following command:

se_gov

24

If Sedna is started successfully it prints ”GOVERNOR has been started in
the background mode”.

2. Create a new database testdb by running the following command:
se_cdb testdb

If the database is created successfully it prints " The database ’testdb’ has
been created successfully”.

3. Start the testdb database by running the following command:
se_sm testdb

If the database is started successfully it prints ”SM has been started in the
background mode”.

You can compile and run the example by following the steps listed below:
1. To compile the example use:

[win:] Clientbuild.bat
[nix:] ./Clientbuild.sh

located in the same folder as Client.c.

2. To run the compiled example use:

[win:] Client.exe
[nix:] ./Client

located in the same folder as Client.c.

1.3 Scheme API

Scheme API allows querying and managing XML data from an application written
in Scheme. Scheme API follows the spirit of SchemeQL [10], an implementation
of SQL 1992 for Scheme. The results of XQuery statements to the Sedna DBMS
via the Scheme API can be represented either in XML or SXML [11].

25

1.3.1 Sessions

For working with the Sedna DBMS from Scheme, you should first establish a
connection between the Scheme API driver and the Sedna DBMS. Here are two
functions to manage connections:

> (sedna:connect-to-database host db-name user password)
: String String String String -> connection-object

Establishes a connection between the client application and the Sedna DBMS.
Returns a ’connection’ object which encapsulate information about the connection.
The arguments are strings that denote connection parameters:

e host is the host where the Sedna DBMS is running. If it is on the same
machine as your Scheme application, you can use "localhost" for the value
of this parameter.

e db-name is the name of the database you want to work with. You are to
establish a separate connection for each database you would like to work
with.

e user is your user name for the session. You can use "SYSTEM" for the value
of this parameter.

e password is your password for the session. You can use the "MANAGER" value
of this parameter.

To disconnect from the database, you can use the following function:

> (sedna:disconnect-from—-database connection)
connection-object -> void

Closes the connection represented by the connection object. If server fails to
close the connection, the function closes the connection forcibly from the client
side and raises the exception, as discussed in subsubsection 1.3.6.

1.3.2 Manage Transactions

After the connection with a database is established and the session is begun, you
can run zero or more transactions in this session. Transactions are to be run
sequentially, with no more than a single transaction at a time, so you should
commit your running transaction before starting a new one.

To begin a new transaction, the following function is provided:

> (sedna:begin-transaction connection)
connection-object -> void

26

It accepts the connection object (earlier created by
sedna:connect-to-database function) and starts a new transaction. If
the transaction could not be created, the exception is raised, as discussed in
subsubsection 1.3.6.

To end your running transaction, you are provided with the following function:

> (sedna:end-transaction connection action)
connection-object, symbol -> void

If actionis ’COMMIT the transaction in the given connection will be committed,
if ’ROLLBACK is given, the transaction will be rolled back.

1.3.3 Executing Queries and Updates

Within a transaction, you can execute zero or more queries to the database.

> (sedna:execute-query connection query)
connection-object, string -> result

The first argument is the connection object, earlier created by
sedna: connect-to-database function. The query is represented as a string and
can express one of the following kinds of statements:

¢ XQuery statement — for querying data from the database, without mod-
ifying it;

e Update statement — for making modifications to the database you work
with;

e Bulk load command — for loading a new XML document from the local
file to the database;

e Database management statement — to create index, trigger, retrieve
metadata, etc.

If an error occurs at the server side during query execution (e.g. the requested
document not found), the function raises an exception that contains the message
about the error occurred.

In the successful case of query execution, sedna:execute-query returns #t for
the last 3 kinds of queries, to denote a successful update made to the database.
The XQuery query results to a sequence of items, which are evaluated lazily and
are represented as a pair:

xquery-result ::= (cons current-item promise)

27

This way of result representation is very close to the notion of SchemeQL cur-
sor [10] (with the only difference in that the Scheme API driver returns XQuery
items instead of table rows returned by SchemeQL). The first member of the pair
is the current-item represented in SXML, and the second member of the pair
holds a promise (which can be forced) to evaluate and return the next item in the
result sequence.

To iterate over the result sequence, you can use the function:

> (sedna:next xquery-result)
: xquery-result -> xquery-result or ’()

which forces the evaluation of the following items in the result sequence, until the
end of the sequence is reached.

Such design allows you to process a query result in a lazy stream-wise fashion
and provides you with an ability to process large query results, which would not
otherwise fit in the main memory.

However, for query results that are not very large, you may find it convenient
to evaluate them all at once and represent the result sequence as a Scheme list.
Scheme API provides a function that converts the xquery-result into the list
that contains all items of the result sequence:

> (sedna:result->list xquery-result)
: xquery-result -> (listof item)

To obtain the result sequence in the form of the list, you can execute your queries
as a superposition of the above considered functions:

(sedna:result->list
(sedna:execute-query connection query))

It should be noted that the XQuery statement result in that case exactly corre-
sponds to the term of a node-set in the XPath implementation in Scheme SX-
Path [14].

If you want to obtain your query results in XML instead of SXML, you can
use the function:

> (sedna:execute-query-xml connection query)
: connection-object, string -> result

It is the counterpart of earlier discussed sedna:execute-query and has the same
signature, but represents query results in XML. The function returns a sequence
of items, in the form of xquery-result discussed above, but the current-item
is now a string containing the representation for the current item in the form of
XML.

28

1.3.4 Bulk Load from Stream

The following wrapper function provides a natural way to load an input stream
containing an XML document into your database:

> (sedna:bulk-load-from-xml-stream
connection port document-name . collection-name)
: connection-object, input-port,
string [, collection-name] -> boolean

As for sedna:execute-query, the first argument here is the connection ob-
ject, earlier created by sedna:connect-to-database function. Argument port is
a Scheme input port and is supposed to contain a well-formed XML document.
Argument document-name specifies the name that will be given to the XML doc-
ument within a database. If the 4-th argument collection-name is supplied,
the XML document is loaded into the collection which name is specified by the
collection-name argument. If the 4-th argument of the function call is not sup-
plied, the XML document is loaded into the database as a standalone document.

By allowing you to specify the input port you would like to use, this function
provides a higher-level shortcut for sedna:execute-query when bulk load from
stream is concerned. For more details on bulk load, see section 2.4.

1.3.5 Higher-level Function for a Transaction

This higher-level function provides a convenient way for executing a transaction
consisting of several queries, within a single function call:

> (sedna:transaction connection . queries)
: connection-object, string* -> result

This function starts a new transaction on the connection objects and executes
all the queries given in order. If no exception occurs, the function commits the
transaction and returns the result of the last query. If any exception occurred
during query execution, the function sends rollback to the Sedna DBMS and passes
along the exception to the application.

1.3.6 Error handling

Error handling in the Scheme API driver is based on the exception mechanism
suggested in the (currently withdrawn) SRFI-12 [12]. The SRFI-12 exception
mechanism is natively supported in the Chicken Scheme compiler [13]. In the
Scheme API driver, we also provide the SRFI-12 implementation for PLT and
Gambit.

29

1.3.7 Code Example

This section presents an example that illustrates the application of the Scheme
API driver.

; Load the necessary Scheme API driver files
(load "collect-sedna-plt.scm")

; Create a connection
(define conn
(sedna:connect-to-database "localhost" "testdb"
"SYSTEM" "MANAGER"))
; Begin a transaction
(sedna:begin-transaction conn)

; Bulk load
(call/cc
(lambda (k)
(with-exception-handler ; Exception handler
(lambda (x)
(display "File already loaded to the database")
(newline)
(k #£))
(lambda Q)
(sedna:execute-query conn
"LOAD ’region.xml’ ’regions’")))))

; Execute a statement and represent it as an SXML nodeset
(pp

(sedna:result->list

(sedna:execute-query conn "doc(’region’)/*/*")))

; Update statement
(pp
(sedna:execute-query conn
"UPDATE delete doc(’region’)//africa"))

; Querying all regions once again
(pp
(sedna:result->list
(sedna:execute-query conn "doc(’region’)/*/*")))

; Commit transaction
(sedna:end-transaction conn ’COMMIT)

30

; Close the connection
(sedna:disconnect-from-database conn)

You can find the full version of this example and the Scheme API driver code
in:

[win:] INSTALL_DIR\examples\api\scheme
[nix:] INSTALL_DIR/examples/api/scheme

where INSTALL_DIR refers to the directory where Sedna is installed.
Before running the example make sure that the Sedna DBMS is installed and
do the following steps:

1. Start Sedna by running the following command in a command line:
se_gov

If Sedna is started successfully it prints ”GOVERNOR has been started in
the background mode”.

2. Create a new database testdb by running the following command:
se_cdb testdb

If the database is created successfully it prints " The database ’testdb’ has
been created successfully”.

3. Start the testdb database by running the following command:
se_sm testdb

If the database is started successfully it prints ”SM has been started in the
background mode”.

If the Sedna DBMS is running on the same computer as your Scheme applica-
tion, you don’t need to change anything in the example code. If the Sedna DBMS
is running on a remote machine, you should use the name of this machine when
connecting to the database with sedna:connect-to-database function.

For running the example supplied, you should copy all files from the folder:

[win:] INSTALL_DIR\examples\api\scheme
[nix:] INSTALL_DIR/examples/api/scheme

into the folder where the Scheme API driver code is located

31

[win:] INSTALL_DIR\driver\scheme
[nix:] INSTALL_DIR/driver/scheme

where INSTALL_DIR refers to the directory where Sedna is installed.
You can use PLT DrScheme GUI to open and run "client.scm" in the graph-
ical mode. You can also run the example from your command line, by typing:

mzscheme -gr client.scm

For running the example with a different Scheme implementation (Chicken or
Gambit), uncomment the corresponding line at the beginning of the example code
in "client.scm" and follow the instructions of the chosen Scheme implementation
in running the program.

2 Database Language

2.1 XQuery Support

The Sedna query language is XQuery [3] developed by W3C. Sedna conforms to
January 2007 specification of XQuery except the following features:

e copy-namespaces declaration works only in preserve, inherit mode re-
gardless of actual prolog values;

e fn:normalize-unicode function is not conformant (it always returns the
same string or raises exception);

e External variables are not supported. However they are supported by XQJ
driver by Charles Foster (see download page);

e Regular expressions (e.g. fn:matches() use them) are based on PCRE [7]
syntax which differs from the one defined in W3C specifications.

Sedna also has full support for two optional XQuery features:

e Full Axis. The following optional axes are supported: ancestor,
ancestor-or-self, following, following-sibling, preceding, and
preceding-sibling;

e Module Feature allows a query Prolog to contain a Module Import and
allows library modules to be created.

Sedna passes " XML Query Test Suite (XQTS)” and has official ”almost passed”
status. The detailed report can be found at http://www.w3.org/XML/Query/
test-suite/XQTSReport.html

32

http://www.w3.org/XML/Query/test-suite/XQTSReport.html
http://www.w3.org/XML/Query/test-suite/XQTSReport.html

2.2 XQuery Options and Extensions
2.2.1 Controlling Serialization

Serialization is the process of converting XML nodes evaluated by XQuery into
a stream of characters. In Sedna serialization is carried out when the result of
a query is returned to the user. You can control the serialization by setting the
serialization parameters specified in [5]. Currently, Sedna supports the following
serialization parameters:

Parameter name \ Values \ Description

indent ”yes” or "no” Output indented
(default yes)

cdata-section-elements | Element list Text within specified elements
e.g. 'name;data’ | appears within CDATA section

To set a serialization parameter, use the output option in a query prolog. The
output option is in the Sedna namespace (http://www.modis.ispras.ru/sedna)
which is the predefined namespace in Sedna so you can omit its declara-
tion. The value of the output option must have the following structure
”parameter-name=value; parameter-name=value”. Consider the following ex-
amples:

declare namespace se = "http://www.modis.ispras.ru/sedna";
declare option se:output "indent=yes; cdata-section-elements=script";
<x><script>K&R C</script>element</x>

As mentioned above, you may omit the Sedna namespace declaration:

declare option se:output "indent=yes; cdata-section-elements=script";
<x><script>K&R C</script>element</x>

This query is evaluated as follows:

<x>
<script><! [CDATA[K&R Cl]></script>
element

</x>

2.2.2 Value index-scan Functions

In the current version of Sedna, query executor does not use indices automatically.
Use the following functions to enforce executor to employ indices.

index-scan ($title as xs:string,
$value as xdt:anyAtomicType,
$mode as xs:string) as node()*

33

The index-scan function scans the index with the $title name and returns
the sequence of nodes which keys are equal (less than, greater than, greater or
equal, less or equal) to the search value $value. A Sedna error is raised if the search
value can not be cast to the atomic type of the index. The $mode parameter of the
xs:string type is used to set the type of the scan. The value of the parameter
must be equal to one of the following: "EQ’ (equal), 'LT’(less than), 'GT’ (greater
than), 'GE’ (greater or equal), 'LE’ (less or equal).

index-scan-between ($title as xs:string,
$valuel as xdt:anyAtomicType,
$value2 as xdt:anyAtomicType,
$range as xs:string) as node()*

The index-scan-between scans the index with the $title name and returns
the sequence of nodes which keys belong to the interval (segment, left half-interval,
right half-interval) between the first $valuel and second $value2 search values. A
Sedna error is raised if the search values can not be cast to the atomic type of the
index. This function provides the $range parameter of the xs:string type to set
the type of the scan. The value of the string must be equal to one of the following:
'INT’ (interval), 'SEG’ (segment), 'HINTR’ (right half-interval), "HINTL’ (left
half-interval).

For example, to select the names of people who live in the London city em-
ploying the "people” index defined in section 2.5.3, use the following expression:

index-scan("people", "London", "EQ")/name

2.2.3 Full-Text Search Functions

Please read section 2.5.4 before reading this section.
In the current version of Sedna, query executor does not use full-text indices
automatically. Use the following functions to enforce executor to employ indices.

ftindex-scan($title as xs:string,
$query as xs:string,
$options as xs:string) as node()*

The ftindex-scan function scans the full-text index with the $title name
and returns the sequence of items which satisfy the $query. If dtSearch [15] is used
as full-text search backend, use dtSearch request language [16] to specify the query.
DtSearch options dtsSearchAnyWords or dtsSearchAllWords may be specified in
$options.

For example, you can employ the ”articles” index defined in section 2.5.4 to
select the titles of articles that contain word ”apple” but not ”pear”:

ftindex-scan("articles", "apple and not pear")/title

34

If native full-text indices are used, the following constructs can be used as parts
of query:

e phrases: several words in single or double quotes will be searched as a phrase

e binary operators: parts of the query separated by whitepace are treated
as conjunction, disjunction is specified by °’0R’. For example: query
>apple juice’ will return only nodes contaitinig both words. while query
’apple OR juice’ will return nodes containing any of these words.

e stemming: if index was created with stemtype=both option, tilde must be
appended to the word in order to use stemming, for example in the query
’apple juice”™’ stemming will be used only for the second word.

e contains: to search for words inside some tag, use CONTAINS; the query
>title CONTAINS word’ will return nodes in which word 'word’ occurs as
part of tag ’title’.

All keywords (like CONTAINS and OR) must be upper-cased.

The ftscan function returns those items of the input sequence $seq which
satisfy the query $query. The function does not use indices and can be applied
to any sequence of nodes, even those that are not indexed. The query $query
is evaluated over the text representation constructed according to the $type and
$customization_rules parameters. The values of the parameters are the same
as those used when a full-text index is created (see section 2.5.4 for details).

ftscan($seq as node()*,
$query as xs:string,
$type as xs:string,
$customization_rules as xs:string) as node()*

For example, you can select the titles of articles that contain word ”apple” but
not ”pear” without using indices and using special customization rules as follows:

ftscan(doc("foo")/library//article,
"apple and not pear",
"customized-value",
(("b","string-value"),("a","delimited-value")))/title

2.2.4 SQL Connection

SQL Connection allows access to relational databases from XQuery using SQL.
The resulting relations are represented on-the-fly as sequences of XML-elements
representing rows. These elements have sub-elements corresponding with the
columns returned by the SQL query and thus can be easy processed in XQuery.
All functions dealing with access to SQL data are located in the namespace
http://modis.ispras.ru/Sedna/SQL which is referred as sql in the following
function declarations and examples.

35

Connections

In order to execute SQL queries on a RDBMS, you should first establish a connec-
tion to it using one of the sql:connect functions:

function sql:connect($db-url as xs:string) as xs:integer
function sql:connect($db-url as xs:string,

$user as xs:string) as xs:integer
function sql:connect($db-url as xs:string,

$user as xs:string,

$password as xs:string) as xs:integer
function sql:connect($db-url as xs:string,

$user as xs:string,

$password as xs:string,

$options as element()*) as xs:integer

These functions attempt to establish a database connection to the given
URL using a user name and password if specified. They return a connection
handle which could be then passed to sql:execute, sql:prepare, sql:close,
sql:rollback, and sql:commit functions. If connection could not be established,
a Sedna error is raised.

All arguments of the sql:connect functions except for $db-url are optional:

e $db-url is the URL of the database to which a connect is established. It
should be one of the following form:

odbc:<driver name>:[//<server>[/<database>][;]] [<options>]

15

;7 after <database> or <server> is required if there are some driver options
following it. Driver options must be in the following form:

<option>=<value>{;<option>=<value>}

List of available options depends on the ODBC driver used. One of the
common options is “Port” which is used to specify the port on which the
database server is configured to listen. For example:

odbc:MySQL ODBC 3.51 Driver://localhost/somedb;Port=1234

e $user is your user name for the session.
e $password is your password for the session.

e $options is an optional sequence of connection options. Connection options
are elements of the form:

36

<sql:option name="<option-name>" value="<option-value>"/>

The only connection option available for the moment is manual-commit
which enables manual commit mode if its value is on.

To disconnect from the database, you can use the following function:
function sql:close($connection as xs:integer) as element()?

It closes database connection associated with connection handle $connection. A
Sedna error is raised if operation cannot be completed.

Executing Queries

When a database connection is established you can start executing queries. Two
types of query execution are supported: direct query execution and prepared query
ezecution.

Direct Queries

Simple SQL queries are executed as the following XQuery example shows:

declare namespace sql="http://modis.ispras.ru/Sedna/SQL";
let $connection :=
sql:connect ("odbc:MySQL ODBC 3.51 Driver://localhost/somedb",
"user", "pass")
return
sql:execute($connection,
"SELECT * FROM people WHERE first = ’Peter’");

The result will be something like this:
<tuple first="Peter" last="Jackson" city="Wellington"/>
There are two functions for direct query execution:

function sql:execute($connection as xs:integer,

$statement as xs:string) as element()x*
function sql:execute($connection as xs:integer,

$statement as xs:string,

$query-options as element()*) as element()x*

These functions execute a SQL query and return a sequence of elements represent-
ing the query result. SQL query can be as both a query statement and an update
statement. In case of query statement, the result sequence contains an element
named ’'row’ for each row of the query result. Each element contains as many
children attributes as there are non-NULL fields in the corresponding result-row.

37

Each attribute has the name of a row field. Fields with NULL values are not
included. In case of update statement, empty sequence is returned.A Sedna error
is raised on an erroneous statement.

The sql:execute have the following arguments:

e $connection is a connection handle, returned by sql:connect function;
e $statement is a string containing SQL statement to be executed;
e $query-optiouns is a sequence of optional query parameters.

Update queries can be executed using the sql:exec-update function:

function sql:exec-update($connection as xs:integer,
$statement as xs:string) as xs:integer
function sql:exec-update($connection as xs:integer,
$statement as xs:string,
$query-options as element()*) as xs:integer

these functions are similar to sql:execute, but return the number of rows affected
by an update query (instead of an empty sequence returned by sql:execute for
update-queries). Function arguments are same as for sql:execute. The behaviour
of this function is undefined for non-update queries.

Prepared Statements

Sometimes it is more convenient or more efficient to use prepared SQL statements
instead of direct query execution. In most cases, when a SQL statement is prepared
it will be sent to the DBMS right away, where it will be compiled. This means
that the DBMS does not have to compile a prepared statement each time it is
executed.

Prepared statements can take parameters. This allows using the same state-
ment and supply it with different values each time you execute it, as in the following
XQuery example:

declare namespace sql="http://modis.ispras.ru/Sedna/SQL";
let $connection :=
sql:connect ("odbc:MySQL 0DBC 3.51 Driver://localhost/somedb",
"user", "pass")
let $statement :=
sql:prepare($connection,
"INSERT INTO people(first, last) VALUES (7, 7)")
return (sql:execute($statement, "John", "Smith"),
sql:execute($statement, "Matthew", "Barney"))

this XQuery code inserts two rows into table people and returns an empty se-
quence.

To use prepared statements, first you need to create a prepared statement
handle using the sql:prepare function:

38

function sql:prepare($connection as xs:integer,

$statement as xs:string) as xs:integer
function sql:prepare($connection as xs:integer,

$statement as xs:string,

$query-options as element()*) as xs:integer

these functions prepare a SQL statement for later execution and returns a prepared
statement handle which can be used in the sql:execute and sql:exec-update
functions. A Sedna error is raised on an erroneous statement.

The sql:prepare functions have the following arguments:

e $connection is a connection handle, created by sql:connect function;

e $statement is a string containing a SQL statement that may contain one
or more '?’ - IN parameter placeholders;

e $query-options is a sequence of optional query parameters.

There are two prepared statement execution functions, similar to direct query
execution:

function sql:execute($prepared-statement as xs:integer,
$paraml as item()7,
...) as element()x*

this function is similar to sql:execute for direct queries and returns a sequence
of elements representing the query result.
The sql:execute function have the following arguments:

e $prepared-statement is a prepared statement handle created by
$sql:prepare;

e $paraml, ... are parameters for parametrized statements. The number of
parameters specified must exactly match the number of parameters of the
prepared statement. NULL values are represented as empty sequences ().

To execute a prepared update statement you may use exec-update function:

function sql:exec-update($prepared-statement as xs:integer,
$paraml as item()7,
...) as xs:integer

This function is similar to sql:execute, but returns the number of rows affected
by an update query (instead of an empty sequence returned by sql:execute for
update-queries). Function arguments are the same as for sql:execute. The be-
havior of this function is undefined for non-update queries.

39

Transactions

The default commit mode of connection is auto-commit, meaning that all updates
will be committed automatically. If this is not desired behaviour, you can pass
manual-commit option to sql:connect when you create a connection handle.

In manual commit mode you can specify when updates will be committed or
rolled back:

declare namespace sql="http://modis.ispras.ru/Sedna/SQL";
let $connection :=
sql:connect("odbc:MySQL O0DBC 3.51 Driver://localhost/testdb",
"user—-name",
"user-password",
<sql:option name="manual-commit" value="1"/>)
return
for $person in doc("auction")/person
return (
sql:execute($connection, "<do something with person>"),
if (fn:all-is-ok($connection, $person)) then
(
sql:execute($connection, "<do something with person>"),
sql:commit ($connection)
)
else
sql:rollback($connection))

There are two functions for specifying transaction boundaries - sql:commit
and sql:rollback (transactions are started automatically by queries, these func-
tions only close them):

function sql:commit($connection as xs:integer) as element()?

sql:commit function commits all changes made during the last transaction in
the database connection specified by connection handle $connection and closes
transaction. A Sedna error is raised if operation cannot be completed.

Function sql:rollback rolls back all changes made during the last transaction
in the database connection specified by the connection handle $connection and
closes transaction. A Sedna error is raised if operation cannot be completed.

function sql:rollback($connection as xs:integer) as element()?

40

2.2.5 External Functions

Ezxternal function is a notion defined in the XQuery specification [3] as follows:
”External functions are functions that are implemented outside the query envi-
ronment”. Support for external functions allows you to extend XQuery by imple-
menting functions in other languages.

Sedna provides a server programming API to write external functions in the
C/C++ language. External functions in Sedna are limited to dealing with se-
quences of atomic values. External functions are compiled and linked in the form
of shared libraries (i.e. .d11 files in Windows or .so files in Linux/FreeBSD and
.dylib in Mac OS) and loaded by the server on demand. Although the Sedna
XQuery executor evaluates queries in a lazy manner, all external function calls are
evaluated in an eager manner.

Using External Functions

To use an external function you need to declare this function in prologue with
external keyword instead of function body. Then it may be used normally:

declare function se:f($a as xs:integer) as $xs:integer external;
£(10)

Creating External Functions

External functions must be written in C/C++. To implement a new XQuery func-
tion func you should write the following C (or C++) functions: func, func_init
and func_deinit. When executor decides that it needs to use an external func-
tion, first it initializes this function by calling func_init, after that it will call
func to compute results as many times as needed. When some external function
is not needed anymore, executor calls func_deinit (which probably will free any
memory allocated by func_init). Each one of the three functions receives an
SEDNA_EF_INIT! structure as a parameter. This structure has several fields that
are initialized by executor before any func_init or func_deinit calls:

typedef struct sedna_ef_init

{
void *(*sedna_malloc) (size_t);
void (*sedna_free) (void *);
SEDNA_SEQUENCE_ITEM *item_buf;

} SEDNA_EF_INIT;

The fields of this structure may be used in your implementation:

L All needed types and constants are defined in the sedna_ef.h file, located in the include
directory of the Sedna distribution. See Section “Sedna Directory Structure” in [1] to learn
where the include directory is located.

41

e sedna_malloc is a pointer to a malloc function which must be used to
allocate memory for function results, this memory will be automatically
freed by the query executor. It may also be used to allocate memory for
internal use, such memory must be freed manually using the sedna_free
function.

e sedna_free is a pointer to free function that releases memory allocated
using sedna_malloc function.

e item_buf is a pointer to a preallocated SEDNA_SEQUENCE_ITEM which may
be used to store results (this allows to avoid using sedna_malloc function
when result is a single atomic non-string value)

func, func_init and func_deinit must have specific signatures:

e func() (required) — computes external function results. This function has
the following signature:

SEDNA_SEQUENCE_ITEM *func(SEDNA_EF_INIT *init,
SEDNA_EF_ARGS *args,
char * error_msg_buf) ;

— init is a pointer to the SEDNA_EF_INIT structure which was passed to
func_init function (if written);

— args is a pointer to the SEDNA_EF_ARGS structure which contains all
function arguments;

— error_msg_buf is a pointer to the string buffer used for specifying
error message if function invocation fails. Maximum message length is
SEDNA_ERROR_MSG_BUF_SIZE bytes, including the null character >\0’.

e func_init() (optional) — the initialization function. It can be used to al-
locate any memory required by the main function. This function has the
following signature:

void func_init(SEDNA_EF_INIT *init, char * error_msg_buf);

— init is a pointer to the SEDNA_EF_INIT structure (the pointer to this
structure will be passed then to func and func_deinit functions);

— error_msg_buf is a pointer to the string buffer used for specifying
error message if function invocation fails. Maximum message length is
SEDNA_ERROR_MSG_BUF_SIZE, including the null character >\0’.

e func_deinit() (optional) — the deinitialization function. It should deallo-

cate any memory allocated by the initialization function. This function has
the following signature:

42

void func_init(SEDNA_EF_INIT *init, char * error_msg_buf);

— init is a pointer to the SEDNA_EF_INIT structure which was passed to
func_init function (if written);

— error_msg_buf is a pointer to the string buffer used for specifying
error message if function invocation fails. Maximum message length is
SEDNA_ERROR_MSG_BUF_SIZE, including the null character *\0’.

When func, func_init or func_deinit is being executed error_msg_buf
contains an empty string. If function succeedes, it should leave this value
empty. In case of error a non-empty string (error description) must be placed
in error_msg_buf (if you place an empty string in error_msg_buf executor as-
sumes that function execution was successful).

Each shared library must also export an null-terminated array with the names
of the XQuery functions defined by this library:

char const *ef_names[] = {"func", NULL};

The file sedna_ef .h defines several types for representing function arguments
and results:

e SEDNA_ATOMIC_TYPE — represents an atomic type, defined as:

typedef enum sedna_atomic_type {
SEDNATYPE_integer,
SEDNATYPE_float,
SEDNATYPE_double,
SEDNATYPE_string

} SEDNA_ATOMIC_TYPE;

e SEDNA_ATOMIC_VALUE — represents an atomic value, defined as:

typedef int SEDNA_integer;
typedef float SEDNA_float;
typedef double SEDNA_double;
typedef char *SEDNA_string;
typedef struct sedna_atomic_value {
SEDNA_ATOMIC_TYPE type;

union {
SEDNA_integer val_integer;
SEDNA_float val_float;

SEDNA_double val_double;
SEDNA_string val_string;
+;
} SEDNA_ATOMIC_VALUE;

43

Memory for values that are pointers (i.e. SEDNA_string) MUST be allocated
using the malloc function passed in the SEDNA_EF_INIT structure.

e SEDNA_SEQUENCE_ITEM — represents a node in a linked list of atomic values,
defined as:

typedef struct sedna_sequence_item {
SEDNA_ATOMIC_VALUE data;
struct sedna_sequence_item *next;
} SEDNA_SEQUENCE_ITEM;

Linked lists are used to represent sequences of atomic values. An empty
sequence is presented by a NULL pointer. If func needs to return a sequence
of values, memory for nodes MUST be allocated using the malloc function
passed in SEDNA_EF_INIT structure.

e SEDNA_EF_ARGS — represents an array of arguments passed to a function,
defined as:

typedef struct sedna_ef_args {
int length;
SEDNA_SEQUENCE_ITEM **args;
} SEDNA_EF_ARGS;

Location of External Function Libraries

Compiled libraries must be placed in the directory 1ib that is (1) in the same
directory where the directory data with database data is located or (2) in the
directory <db_name>_files where database data are stored?. Libraries that are
database-independent should be placed in (1). Libraries that are database-specific
should be placed in (2). Overloaded functions are not allowed. If two libraries
located in (1) and (2) contain functions with the same name, a function from the
library in (2) is called. If libraries in the same directory (1 or 2) contain functions
with the same name, it is not specified which one is called.
There is a sample external function code available in the folder:

[win:] INSTALL_DIR\examples\apilexternal-functions\c\
[nix:] INSTALL_DIR/examples/api/external-functions/c/

where INSTALL_DIR refers to the directory where Sedna is installed.

2See Section “Sedna Directory Structure” in [1] to learn where database data are located

44

2.2.6 Runtime Properties

The se:get-property function provides a method for applications to determine in
runtime the current values of system parameters, configurable limits, environment
information. The name argument specifies the system variable to be queried. The
function is defined within the predefined Sedna namespace (se prefix) as follows:

se:get-property($name as xs:string) as item()
The available names are as follows:

e $user - retrieves string which contains current user name

2.3 Update Language

The update language is based on the XQuery update proposal by Patrick Lehti [6]
with the number of improvements.

Note 2 The result of each update statement, shouldn’t break the well-formedness
and validness of XML entities, stored in the database. Otherwise, an error is
raised.

Sedna provides several kinds of update statements:

e INSERT statement inserts zero or more nodes into a designated position with
respect to a target nodes;

e DELETE statement removes target nodes from the database with theirs de-
scendants;

e DELETE_UNDEEP statement removes target nodes from the database preserv-
ing theirs content;

e REPLACE statement replaces target nodes with a new sequence of zero or
more nodes;

e RENAME statement changes the name of the target nodes.

The syntax and semantics of these expressions are described in the following sec-
tions.

Insert Statement

The insert statement inserts result of the given expression at the position identified
by the into, preceding or following clauses:

UPDATE
insert SourceExpr (intol|preceding|following) TargetExpr

45

SourceExpr identifies the ordered sequence of the nodes to be inserted. The into,
preceding or following clause identifies the position. For each node in the result
sequence of TargetExpr, the result sequence of SourceExpr is inserted to the
position identified by the into, preceding or following clauses. If the into
clause is specified, the sequence is appended to the random position of the child
sequence for each node in the result of TargetExpr. If the preceding clause is
specified, the sequence is appended before each node in the result of TargetExpr.
If the following clause is specified, the sequence is appended after each node in
the result of TargetExpr.
Error is raised if one of the following conditions is met:

e There are non-element nodes in the result of the TargetExpr expression
evaluation in case of the into clause;

e There are temporary nodes in the result of the TargetExpr expression eval-
uation (a node is considered temporary, if it is created as the result of the
XQuery constructor evaluation).

For example, the following update statement inserts new warning element into
all blood_pressure elements which have systolic value greater than 180:

UPDATE
insert <warning>High Blood Pressure!</warning>
preceding doc("hospital")//blood_pressure[systolic>180]

Delete Statement

The DELETE statement removes persistent nodes from the database. It contains a
subexpression, that returns the nodes to be deleted.

UPDATE
delete Expr

Expr identifies the nodes to be removed from the database. Note, that nodes are
removed from the database with all their descendants.
Error is raised if one of the following conditions is met:

e There are atomic values in the result of the Expr expressions;

e There are temporary nodes in the result of the Expr expression evaluation
(a node is considered temporary, if it is created as the result of the XQuery
constructor evaluation).

The following update statement deletes all blood_pressure nodes which contain
systolic value higher than 180:

UPDATE
delete doc("hospital")//blood_pressure[systolic>180]

46

Delete Undeep Statement

The DELETE_UNDEEP statement removes nodes identified by Expr, but in contrast
to the DELETE statement it leaves the descendants of the nodes in the database.

UPDATE
delete_undeep Expr

Expr identifies the nodes to be removed from the database.
Error is raised if one of the following conditions is met:

e There are atomic values in the result of the Expr expressions;

e There are temporary nodes in the result of the Expr expression evaluation
(a node is considered temporary, if it is created as the result of the XQuery
constructor evaluation).

Consider the following example. The document named a.xml before update:

<A>

<C/>
<D/>

The following delete undeep statement removes B nodes and makes C' and D nodes
children of the A element:

UPDATE
delete_undeep doc("a.xml")//B

This is how the a.xml document will look after the update:

<A>
<C/>
<D/>

Replace Statement

The REPLACE statement is used to replace nodes in an XML document in the
following manner:

UPDATE
replace $var [as type]l in SourceExpr
with TargetExpr($var)

47

Replace statement iterates over all the nodes returned by the SourceExpr,
binding the variable $var to each node. For each binding the result of
the TargetExpr($var) expression is evaluated. Each node returned by the
SourceExpr is replaced with the returned sequence of nodes. Note that
TargetExpr is executed over the original document without taking into account
intermediate updates performed during execution of this statement.

Error is raised if one of the following conditions is met:

e There are atomic values in the result of the SourceExpr or TargetExpr
expressions;

e There are temporary nodes in the result of the SourceExpr expression eval-
uation (a node is considered temporary, if it is created as the result of the
XQuery constructor evaluation).

The $var variable bound in replace clause may have an optional type decla-
ration. If the type of a value bound to the variable does not match the declared
type, an error is raised.

In the following example the salary of persons named ”John” is doubled.

UPDATE
replace $p in doc("foo.xml")/db/person[name="John"]
with
<person>
{($p/0x,
$p/node () [not (self::salary)],
for $s in $p/salary
return <salary>{$s*2}</salary>)}
</person>

Rename Statement

The RENAME statement is used to change the qualified name of an element or
attribute:

UPDATE
rename TargetExpr on (QName

Rename statement changes name property of the all nodes returned by the
TargetExpr expression with a new (QName.
Error is raised if one of the following conditions is met:

e There are items which are not element or attribute nodes in the result of
the TargetExpr expression evaluation;

48

e There are temporary nodes in the result of the TargetExpr expression eval-
uation (a node is considered temporary, if it is created as the result of the
XQuery constructor evaluation).

The following expression changes the name of all the job elements without
changing their contents:

UPDATE
rename doc("foo.xml")//job on profession

2.4 Bulk Load

To bulk load a stand alone document use the following statements:
LOAD "path_to_file" "document_name"

The first parameter is a path to the file which contains a document to be loaded.
The second parameter is the name for this document in the database.
For example,

LOAD "/opt/test.xml" "test"

loads file /opt/test.xml into database as a stand-alone document with name
test.
To load document into a collection, use the following statement:

LOAD "path_to_file" "document_name" "collection_name"

The first parameter is a path to the file which contains a document to be loaded.
The second parameter is the name for this document in the database. The third
parameter is the collection name to load the document into.

For example,

LOAD "/opt/mail-01.xml" "mail-01" "mails"

loads file /opt/mail-01.xml into collection mails.

For performing bulk load not from the source file but from an input stream,
use the following statements (first for loading stand alone document, second - for
loading into a collection):

LOAD STDIN "document_name"

LOAD STDIN "document_name" "collection_name"

49

Compared to the above bulk load statements, here the "file_name" is replaced
by the keyword STDIN to denote that the file to be loaded is taken from the input
stream. Characters in the input stream must form a well-formed XML document,
which is loaded into the database and named as specified by "document_name".
If collection_name is set, the document is loaded into the specified collection of
the database.

By default, the standard input stream is used. You can redirect a different
input stream to be used as an input for bulk load. For example, an XML document
produced by some program as its output can be loaded to a Sedna database in a
stream-wise fashion. To redirect the input when working from a command line,
you can use the functionality provided by your operation system. Java and Scheme
APIs provide additional wrappers for bulk load from stream, such that the input
stream can be specified by an additional argument of a function call.

By default, Sedna removes boundary whitespace according to the boundary-
space policy defined in [3]. To control boundary whitespace processing, use
boundary-space declaration [3] in the prolog of the LOAD statement. The fol-
lowing example illustrates a boundary-space declaration that instructs Sedna to
preserve whitespace while loading auction.xml document:

declare boundary-space preserve;
LOAD "auction.xml" "auction"

Notice, that heavy bulk-loads might be greatly optimized by setting
SEDNA_LOG_AMOUNT connection attribute to SEDNA_LOG_LESS (see Section 1.2.3 for
more information).

2.4.1 CDATA section preserving

It is possible to save the formatting of continuous CDATA sections with
cdata-section-preserve option.

declare option se:bulk-load "cdata-section-preserve=yes";
LOAD "auction.xml" "auction"

The cdata-section-preserve=yes option makes text nodes within CDATA
sections to be serialized within CDATA sections. CDATA section formatting is
saved only for the whole text node and this property of text node is inherited
when text node is appended. E.g. in the following document fragment CDATA
section will be serialized as it appears in document:

<a><! [CDATA [<example data>]]>
But the next fragment will not be saved with mixed formatting.
<a><! [CDATA[<example]]> data<![CDATA[>]]>

Instead, it will be serialized in the same way as prevoius one, i.e. the whole
text will be in CDATA section.

50

2.5 Data Definition Language

This section describes Sedna Data Definition Language (DDL) that is used to
create and manage the database structures that will hold data.

Most of parameters of Sedna DDL are computable and specified as XQuery
expressions. The expected type of all the parameters is xs:string. All parameters
are evaluated and atomized. If the atomized value is not of xs:string, a dynamic
error is raised.

2.5.1 Managing Standalone Documents

CREATE DOCUMENT doc-name-expr

The CREATE DOCUMENT statement creates a new standalone document with the
name that is the result of doc-name-expr.

DROP DOCUMENT doc-name-expr

The DROP DOCUMENT statement drops the standalone document with the name
that is the result of doc-name-expr.
For example, next statement:

}
CREATE DOCUMENT "report"

creates a documentnamed "report”, while:
DROP DOCUMENT "report"

There is a system document $documents which lists all available documents
and collections. For details on retrieving metadata see 2.5.6 section.

2.5.2 Managing Collections

Sedna provides a mechanism of organizing multiple documents into a collection.
Collection provides a uniform way of writing XQuery and XML update statements
addressed to multiple documents at once. Collections are preferable for situations
when a group of documents is to be queried/updated by means of not referring
to their individual document names, but according to some conditions over their
content.

In a Sedna database, a document can be either a standalone one (when it
doesn’t belong to any collection) or belonging to some collection. Compared to
standalone documents, all documents within a given collection have a common
descriptive schema. The common descriptive schema (which can be considered
as a union of individual descriptive schemas for all documents that belong to a

o1

collection) allows addressing XQuery and XML update queries to all members of
a collection.

Below is the specification of syntax and semantic of statements that manage
collections.

CREATE COLLECTION coll-name-expr

The CREATE COLLECTION statement creates a new collection with the name
that is the result of coll-name-expr.

For example, CREATE COLLECTION "mails" creates a collection named ”mails”.

XML documents can be loaded into the collection, as previously described in
section 2.4.

To access a single document from collection in an XQuery or XML update
query, the document function accepts a collection name as its second optional
argument:

doc($doc as xs:string,
$col as xs:string) as document-node()

The function returns the document with the $doc name that belongs to the col-
lection named $col.

For example, doc(’mail-01’, ’mails’) query returns documents with name
mail-01 from collection mails.

fn:collection($col as xs:string?) as document-node ()*

The function collection can be called from any place within an XQuery or XML
update query where the function call is allowed. The collection function returns
the sequence of all documents that belong to the collection named $col. The
relative order of documents in a sequence returned by collection function is
currently undefined in Sedna.

Conventional XQuery predicates can be used for filtering the sequence returned
by the collection function call, for selecting certain documents that satisfy the
desired condition.

CREATE DOCUMENT doc-name-expr IN COLLECTION coll-name-expr

This statement creates a new document named doc-name-expr in a collection
named coll-name-expr.
For example, the following statement:

CREATE DOCUMENT ’mail’ IN COLLECTION °mails’

creates a document named ”"mail” in the collection named ”mails”.

DROP DOCUMENT doc-name-expr IN COLLECTION coll-name-expr

52

The DROP DOCUMENT IN COLLECTION statement drops the document named
doc-name-expr located in the collection named coll-name-expr.

DROP COLLECTION coll-name-expr

The DROP COLLECTION statement drops the collection with the
coll-name-expr name from the database. If the collection contains any
documents, these documents are dropped as well.

RENAME COLLECTION old-name-expr INTO new-name-expr

The RENAME COLLECTION statement renames collection with the name that
is result of the old-name-expr. The new name is assigned which is result
of the new-name-expr. Both result of the old-name-expr and result of the
new-name-expr after atomization applied must be either of type xs:string (or
derived) or promotable to xs:string.

There is a system document $collections which lists all available collections.
For details on retrieving metadata see 2.5.6 section.

2.5.3 Managing Value Indices

Sedna supports value indices to index XML element content and attribute values.
Index could be based on two different structure types: B+ tree and BST (exper-
imental) (Block String T'rie). Below is the description of statements to manage
indices.

CREATE INDEX title-expr
ON Pathl BY Path2

AS type

[USING tree-typel

The CREATE INDEX creates an index on nodes (specified by Pathl) by keys
(specified by Path2).

Path1 is an XPath expression without any filter expressions that identifies the
nodes of a document or a collection that are to be indexed. Path2 is an XPath
expression without any filter expressions that specifies the relative path to the
nodes whose string-values are used as keys to identify the nodes returned by the
Pathl expression. The Path2 expression should not start with ’/” or ’//’. The full
path from the root of documents (that may be in a collection) to the key nodes is
Pathi/Path2.

For instance, let Pathl be doc("a")/b/c and Path2 be d. Let X be the node
returned by the Pathl expression, and Y be one of the nodes returned by the
doc("a")/b/c/d expression. If Y is the descendant of X, then the value of Y is
used as the key for searching the node X.

33

title-expr is the title of the index created. It should be unique for each index
in the database.

type is an atomic type which the value of the keys should be cast
to. The following types are supported for B-tree: xs:string, xs:integer,
xs:float, xs:double, xs:date, xs:time, xs:dateTime, xs_yearMonthDuration,
xs_dateTimeDuration. Note that BST supports xs:string only.

tree-type defines the structure that would be used for index storage. This
argument is optional. Index is stored using B+ tree structure by default and it’s
a good choice in the general case. But there is one more implemented structure
that could show great disk-space economy in certain situations. BST is based on
prefix tree (or t¢rie) conception. Main distinguishing features are:

1. BST can handle strings with any length.

2. If you want to index data by fields that contain strings with repeating pre-
fixes (e.g: URLs, URIs) BST would be a good choice for you.

In the case of appropriate usage BST can store indexes up to 4 times more com-
pressed with the same search speed in comparison with B+ tree.

The following tree-type are supported: "btree" for B+ tree (default),
"bstrie" for BST.

Note 3 BST feature is experimental at this moment; do not use it in produc-
tion or any critical applications.

In the following example, people are indexed by the names of their cities. To
generate the index keys, city names are cast to the xs:string type. B+ tree is
used for index storage.

CREATE INDEX "people"
ON doc("auction")/site//person BY address/city
AS xs:string

The following example is exactly the same as the previous but uses BST for
index storage:

CREATE INDEX "people"

ON doc("auction")/site//person BY address/city
AS xs:string

USING "bstrie"

To remove an index, use the following statement:
DROP INDEX title-expr

The DROP INDEX statement removes the index named title-expr from the
database.

o4

Note 4 In the current version of Sedna, query executor does not use indices au-
tomatically. You can enforce the executor to employ indices by using the XQuery
index-scan functions specified in section 2.2.2.

2.5.4 Managing Full-Text Indices

Sedna allows to build full-text indices in order to combine XQuery with full-text
search facilities. Resulting indices need to be used explicitly via full-text search
functions (see 2.2.3), XQuery full text extensions are not supported.

Sedna can be integrated with dtSearch [15], a commercial text retrieval engine,
which provides full-text indices. As dtSearch is a third party commercial prod-
uct, Sedna does not include dtSearch. If you are interested in using Sedna with
dtSearch, please contact us. Below is the description of statements to manage
full-text indices in Sedna.

CREATE FULL-TEXT INDEX title-expr
ON path

TYPE type

L

WITH OPTIONS options

]

The CREATE INDEX indexes nodes (specified by path) by a text representation
of the nodes. The text representations of the nodes are constructed according to
type parameter value.

title-expr is the title of the index created. It should be unique for each
full-text index in the database.

path is an XPath expression without any filter expressions that identifies the
nodes of a document or a collection that are to be indexed. An example of the
path expression is as follows doc("foo")/library//article.

type specifies how the text representations of nodes are constructed when the
nodes are indexed. type can have one of the following values:

e "xml" — the XML representations of the nodes are used;

e "string-value" — the string-values of the nodes are used as obtained using
standard XQuery fn:string function. The string-value of a node is the
concatenated contents of all its descendant text nodes, in document order;

e "delimited-value" — the same as "string-value" but blank characters
are inserted between text nodes;

e "customized-value" ((element-gname, type) ,
(element-gname, type)) — this option allows specifying types for
particular element nodes. Here element-qname is a QName of an element,

95

type can have one of the values listed above (i.e. "xml", "string-value",
"delimited-value"). For those elements that are not specified in the list,
the "xml" type is used by default.

options is a sting of the following form: "option=value{,option=valuel}".
It denotes options used for index constuction. The following options are available:

e backend — specifies which implementation of full-text indexes to use. Al-
lowed values are native and dtsearch, the latter in only available in
dtSearch-enabled builds. For dtSearch-enabled builds, default backend is
dtsearch, for other builds - native.

Options for native backend:

e stemming — specifies stemming language to use.

e stemtype — in order to be able to search both stemmed and original words

- add stemtype=both option, otherwise stemming will be used always if
enabled.

In the following example, articles are indexed by their contents represented as
XML.

CREATE FULL-TEXT INDEX "articles"
ON doc("foo")/library//article
TYPE "xml"

The example below illustrates the use of "customized-value" type.

CREATE FULL-TEXT INDEX "messages"
ON doc("foo")//message
TYPE "customized-value"
(("b", "string-value"),
("a", "delimited-value"))

To remove a full-text index, use the following statement:
DROP FULL-TEXT INDEX title-expr

The DROP FULL-TEXT INDEX statement removes the full-text index named
title-expr from the database.

Note 5 In the current version of Sedna, query executor does not use full-text

indices automatically. You can enforce the executor to employ indices by using the
XQuery full-text search functions specified in section 2.2.35.

56

2.5.5 Managing Modules

XQuery allows putting functions in library modules, so that they can be shared and
imported by any query. A library module contains a module declaration followed
by variable and/or function declarations. The module declaration specifies its
target namespace URI which is used to identify the module in the database. For
more information on modules see the XQuery specification [3].

Before a library module could be imported from an query, it is to be loaded
into the database. To load a module, use the following statement.

LOAD MODULE "path_to_file", ..., "path_to_file"

Each path_to_file specifies a path to the file. If only one parameter is sup-
plied, it refers to the file which contains the module definition. The module defini-
tion can also be divided into several files. In this case all files must have a module
declaration with the same target namespace URI (otherwise an error is raised).

For example, suppose that you have the following module stored in
math.xqlib.

module namespace math = "http://example.org/math";
declare variable $math:pi as xs:decimal := 3.1415926;

declare function math:increment($num as xs:decimal) as xs:decimal {
$num + 1

};

declare function math:square($num as xs:decimal) as xs:decimal {
$num * $num

};

You can load this module as follows.
LOAD MODULE "math.xqlib"

Once an library module is loaded into the database, it can be imported into an
query using conventional XQuery module import [3]. For example, you can import

the above module as follows.

import module namespace math = "http://example.org/math";

math:increment (math:square($math:pi))

To replace an already loaded module with new one, use the following statement.

57

LOAD OR REPLACE MODULE "path_to_file", ..., "path_to_file"
To remove a library module from the database, use the following statement.
DROP MODULE "target_namespace_URI"

It results in removing the library module with the given target namespace URI
from the database.

You can obtain information about modules loaded into the database by query-
ing the system collection named $modules as follows collection("$modules").

2.5.6 Retrieving Metadata

You can retrieve various metadata about database objects (such as documents,
collections, indexes, etc.) by querying system documents and collections listed
below.

Names of the system documents and collections start with $ symbol. The
system documents and collections (except the ones marked with * symbol) are not
persistent but generated on the fly. You can query these documents as usual but
you cannot update them. Also these documents are not listed in the $documents
system document.

e $documents document — list of all stand-alone documents, collections and
in-collection documents (except system meta-documents and collection, like
$documents document itself);

e $collections document — list of all collections;

e $modules document — contains list of loaded modules with theirs names;

e $modules (*) collection — contains documents with precompiled definitions
of XQuery modules;

e $indexes document — list of indexes with information about them;

e $ftindexes document — list of full-text indexes with information about
them (this document is available if Sedna is build with SE_ENABLE_FTSEARCH
enabled);

e $triggers document — list of triggers with information about them (this
document is available if Sedna is build with SE_ENABLE_TRIGGERS enabled);

e $db_security_data (*) document— list of users and privileges on database
objects;

e $schema document — descriptive schema of all documents and collections
with some schema-related information;

e $errors document — list of all errors with descriptions;

e $version document — version and build numbers;

e $schema_<name> document — the descriptive schema of the document or
collection named <name>;

e $document_<name> document — statistical information about the document
named <name>;

38

$collection_<name> document — statistical information about the collec-
tion named <name>.

The statistical information in $document_<name> and $collection_<name>
documents contains the following elements:

e total_schema_nodes — the number of the nodes of the descriptive schema;
e total_schema_text_nodes — the number of the attribute and text nodes of

the descriptive schema;

e total_nodes — the number of the nodes of the document (or collection);
e schema_depth — the maximal depth of the document (or collection);
e total_desc_blk — the number of the descriptor blocks occupied by docu-

ment (or collection);
total_str_blk — the number of the text blocks occupied by document (or
collection);

e saturation — fill factor of the blocks (in percents);

2.6

total_innr_blk — the number of the descriptor blocks occupied by docu-
ment (or collection) except first and last blocks in each chain of blocks;
total_innr_size — the size of the inner blocks;

innr_blk_saturation — fill factor of the inner blocks (in percents);
strings — the share of the string blocks (in percents);

descriptors — the share of the descriptor blocks (in percents);

nid — the share of the long labeling numbers’ (> 11) total size (in percents);
indirection — the share of the indirection records’ total size (in percents);
total_size — the total size of the document (or collection), in MBs;
string_size — the total size of the string blocks, in MBs;
descriptor_size — the total size of the descriptor blocks, in MBs;
nids_size — the total size of the long labeling numbers, in MBs;
free_space_in_str_blocks — the total size of the free space in the string
blocks;

indirection_size — the total size of the indirection records, in MBs;
nids_size — the share of the indirection records’ total size (in percents);
STRINGS — the histogram of the xml data by its size;

NID — the histogram of the labeling numbers its length;

XQuery Triggers

XQuery triggers support in Sedna is provided as an XQuery extension. To create
a trigger into the Sedna database you have to issue the following CREATE TRIGGER
statement:

CREATE TRIGGER trigger-name
(BEFORE | AFTER) (INSERT | DELETE | REPLACE)
ON path

39

(FOR EACH NODE | FOR EACH STATEMENT)

DO {

Update-statement ($NEW, $0LD,$WHERE) ;

Update-statement ($NEW, $0LD,$WHERE) ;
XQuery-statement ($NEW, $0LD, $WHERE);

}

The DROP TRIGGER statement drops the trigger with the name which is the
result of the trigger-name-expression:

DROP TRIGGER trigger-name-expression

Triggers can be defined to execute either before or after any INSERT, DELETE
or REPLACE operation, either once per modified node (node-level triggers), or once
per XQuery statement (statement-level triggers). If a trigger event occurs, the
trigger’s action is called at the appropriate time to handle the event.

Create Trigger Parameters:

e trigger-name is the unique per database trigger name.

e ON path is XPath expression without any filter expression (predicates) that

identifies the nodes on which the trigger is set. That means that the trigger
fires when corresponding modification (insertion, deletion or replacement) of
those nodes occurs. This XPath expression is prohibited to have predicates
and parent axes.

FOR EACH NODE/FOR EACH STATEMENT: these key words mean the trigger
created is a node-level or statement-level trigger. With a node-level
trigger, the trigger action is invoked once for each node that is affected by
the update statement that fired the trigger. In contrast, a statement-level
trigger is invoked only once when an appropriate statement is executed,
regardless of the number of nodes affected by that statement.

BEFORE/AFTER: triggers are also classified as before-triggers and after-
triggers. BEFORE keyword in CREATE TRIGGER statement means the trigger
created is before-trigger; AFTER keyword means the trigger created is after-
trigger. Statement-level-before triggers fire before the statement starts to
do anything, while statement-level-after triggers fire at the very end of the
statement. Node-level-before triggers fire immediately before a particular
node is operated on, while node-level-after triggers fire immediately after
the node is operated on (but before any statement-level-after trigger).

60

e DO: trigger action is specified in braces {} after the DO key word. Action
contains zero or more update statements and an XQuery query. It is a
mandatory requirement that node-level trigger action ends with an XQuery
query, while this is optional for actions of statement-level triggers. It is
prohibited to use prolog in statements of the trigger action.

e Transition variables $NEW, $0LD and $WHERE are defined for each node-level
trigger firing and can be used in each statement of the trigger action. These
tree variables are defined as follows:

— For INSERT: $NEW is the node being inserted; $0LD is undefined; $WHERE
is the parent node in case in insert-into statement and sibling node in
case of insert-preceding and insert-following statements;

— For DELETE: $NEW is undefined; $0LD is the node being deleted; $WHERE
is the parent of the deleted node;

— For REPLACE: $NEW is the node being inserted during the replacement;
$0LD is the node being replaced; $WHERE is the parent of the replaced
node.

You cannot use transition variables in statement-level triggers.

XQuery statement in the trigger action of a node-level trigger can return a
node to the calling executor, if they choose. A node-level-trigger fired before an
operation has the following choices:

e It can return empty sequence to skip the operation for the current node.
This instructs the executor to not perform the node-level operation that
invoked the trigger (the insertion or replacement of a particular node).

e For node-level INSERT triggers only, the returned node becomes the node
that will be inserted. This allows the trigger to modify the node being
inserted.

e A node-level before trigger that does not intend to cause either of these
behaviors must be careful to return as its result the same node that was
passed in (that is, the $NEW node for INSERT and REPLACE triggers. For
DELETE triggers its returned value is ignored in all cases except it is an
empty sequence).

The trigger action return value is ignored for node-level triggers fired after
an operation, and for all statement-level triggers, and so they may as well return
empty sequence.

If more than one trigger is defined for the same event on the same document,
the triggers will be fired in alphabetical order by trigger name. In the case of before
triggers, the possibly-modified node returned by each trigger becomes the input

61

to the next trigger. If any before trigger returns empty sequence, the operation is
abandoned for that node and subsequent triggers are not fired.

Typically, node-level-before triggers are used for checking or modifying the
data that will be inserted or updated. For example, a before trigger might be used
to insert the current time node as a child of the inserting node, or to check that two
descendants of the inserting node are consistent. Node-level-after triggers are most
sensibly used to propagate the updates to other documents, or make consistency
checks against other documents. The reason for this division of labor is that an
after-trigger can be certain it is seeing the final value of the node, while a before-
trigger cannot; there might be other before triggers firing after it. When designing
your trigger-application note, that node-level triggers are typically cheaper than
statement-level ones.

If a trigger function executes update-statement then these commands may fire
other triggers again (cascading triggers). Currently trigger cascading level in Sedna
is limited to 10.

Note 6 Currently is it prohibited in a trigger action to update the same document
or collection that is being updated by the outer update statement that has fired this
trigger.

update: update: update:
INSERT DELETE REPLACE
trigger event: || trigger path trigger path
INSERT >= >=

update path

update path

trigger event:

DELETE

trigger path
>=
update path

trigger path
>=
update path

trigger event:

REPLACE

trigger path
>=

update path

Figure 1: Update and trigger path lengths needed for trigger firing

Note also that hierarchy of the XML data sometimes can affect the trigger firing
in a complicated way. For example, if a node is deleted with all its descendant
subtree, then a DELETE-trigger set on the descendants of the deleting node is fired.
In this situation length of trigger path >= length of update path. In general, triggers
fire according to the table in figure 1.

2.6.1 Trigger Examples

The following trigger is set on insertion of person nodes. When some person
node is inserted, the trigger analyzes its content and modifies it in the following

62

way. If the person is under 14 years old, the trigger inserts additional child node
age-group with the text value ’infant’: if the person is older than 14 years old -
the trigger inserts age-group node with value ’adult’:

CREATE TRIGGER "tri1"
BEFORE INSERT
ON doc("auction")/site//person
FOR EACH NODE
DO {
if (§NEW/age < 14)
then
<person>{attribute id {$NEW/@idl}}
{$NEW/*}
<age-group>infant</age-group>
</person>
else
<person>{attribute id {$NEW/@id}}
{$NEW/*}
<age-group>adult</age-group>
</person>;

The following trigger t¢r2 prohibits (throws exception) stake increase if the
person has already more than 3 open auctions:

CREATE TRIGGER "tr2"
BEFORE INSERT
ON doc("auction")/site/open_auctions/open_auction/bidder
FOR EACH NODE
DO {

if (($NEW/increase > 10.5) and

(count ($WHERE/ . . /open_auction
[bidder/personref/@person=$NEW/personref/@person]) > 3))

then error(xs:QName("tr2"),"The increase is prohibited")
else ($NEW);
}

The following trigger ¢r3 cancels person node deletion if there are any open
auctions referenced by this person:

CREATE TRIGGER "tr3"

BEFORE DELETE

ON doc("auction")/site//person
FOR EACH NODE

63

DO {
if (exists(
$WHERE//open_auction/bidder/personref/@person=$0LD/@id))
then ()
else $0LD;
}

The next statement-level trigger ¢r4 maintains statistics in the document
named stat. When this trigger is fired, the update operation is completed - that
gives the possibility to make aggregative checks on the updated data. After dele-
tion of any node in the auction document, the trigger refreshes statistics in stat
and throws exception if there are more than 50 persons left:

CREATE TRIGGER "tr4"
AFTER DELETE
ON doc("auction")//*
FOR EACH STATEMENT
DO {
UPDATE replace $b in doc("stat")/stat with
<stat>
<open_auctions>
{count (doc("auction")//open_auction)?
</open_auctions>
<closed_auctions>
{count (doc("auction")//closed_auction)}
</closed_auctions>
<persons>
{count (doc("auction")//person)}
</persons>
</stat>;

UPDATE insert
if (count (doc("auction")//person) < 10)
then <warning>
"Critical number of person left in the auction"
</warning>
else ()
into doc("stat")/stat;

2.7 Debug and Profile Facilities

Sedna provides several tracing, debug and perfomance profiling tools that can help
to monitor and analyze queries and update statements:

64

e Trace — provides a query execution trace intended to be used in debugging
queries (section 2.7.1);

e Debug Mode — provides stack of physical operations when error is raised
(section 2.7.2);

e Explain Query — shows complete physical execution plan of the query or
update statement (section 2.7.3);

e Profile Query — creates complete physical execution plan of the query or
update statement with profile information (execution time, number of calls,
etc) for each physical operation (section 2.7.4).

2.7.1 Trace

Sedna supports standard XQuery function fn:trace [4] providing user helper fa-
cility to trace queries. While executing XQuery query using fn:trace function
intermediate results are shown to the user.

For example in Sedna Terminal the query with fn:trace function will provide
the following output. Trace information is marked with ## string:

Query:
let $r:= trace(doc("region")/regions/*, "## ")

return $r[id_region="afr"]

Output:
<africa><id_region>afr</id_region></africa>

<africa>
<id_region>afr</id_region>
</africa>

<asia><id_region>asi</id_region></asia>

<australia><id_region>aus</id_region></australia>
<europe><id_region>eur</id_region></europe>

<namerica><id_region>nam</id_region></namerica>
<samerica><id_region>sam</id_region></samerica>

If you want to use trace facility in your application working through Sedna
API you should set your own debug handler as it is shown in 1.2.6 section.

65

2.7.2 Debug Mode

In addition to trace facility provided by standard XQuery fn:trace function (see
previous section, 2.7.1) debug mode can be turned on in Sedna Terminal (for
details see ”Sedna Terminal” section of the Sedna’s Administration Guide) or in
your application using corresponding Sedna API functions (see 1.2.3 section).

Fach query in Sedna is represented and executed internally as a tree of the
physical operations. Debug mode is mechanism that allows to get stack of the
physical operations after dynamic error was raised. It serves two goals:

e localize error in the query’s source code;
e obtain information of the query execution process.

Let us consider the following query to illustrate execution in the debug mode:

Query:

(: In this query dynamic error will be raised)
(: due to "aaaa" is not castable to xs:integer. :)
declare function local:f($i as item()) as xs:integer

{

$i cast as xs:integer

};

for $i in (1,2,3,"aaaa"
return local:f($i)

Output:

3

<stack xmlns=’http://www.modis.ispras.ru/sedna’>
<operation name=’PPCast’ line=’3’ column=’4’ calls=’7’/>
<operation name=’PPFunCall’ line=’7’ column=’8’ calls=’7’/>
<operation name=’PPReturn’ line=’6’ column=’5’ calls=’4’/>
<operation name=’PPQueryRoot’ calls=’4’/>

</stack>

SEDNA Message: ERROR FORGOOO1

Invalid value for cast/constructor.
Details: Cannot convert to xs:integer type
Query line: 3, column:4

66

As you can see in the output above each item of the operations stack list
consists of the following parts:

e operation name (PPCast and PPFunCall in the example);

e calls counter - number of calls of the operation;

e corresponding query and column numbers;

e optional additional information (qualified name of the function in the exam-

ple).

2.7.3 Explain Query

The explain statement has the following syntax:

EXPLAIN
{XQuery or Update statement to explain}

Each query in Sedna is represented and executed internally as a tree of the physical
operations. With the help of EXPLAIN statement you can obtain detailed query
execution plan which shows how Sedna executes this query.

The following query illustrates EXPLAIN statement execution:

Query:

explain

declare function local:fact($i as xs:integer) as xs:integer {
if (81 <= 1)
then 1

else $i * local:fact($i - 1)
};

local:fact(10)

Output:

<prolog xmlns="http://www.modis.ispras.ru/sedna">
<function id="0" function-name="local:fact" type="xs:integer">
<arguments>
<argument descriptor="0" type="xs:integer"/>
</arguments>
<operation name="PPIf" position="2:5">

<operation name="PPLMGeneralComparison"
comparison="le" position="2:12">

67

<operation name="PPVariable" descriptor="0"
variable-name="i" position="2:9"/>

<operation name="PPConst" type="xs:integer"
value="1" position="2:15"/>
</operation>
<operation name="PPConst" type="xs:integer"
value="1" position="3:10"/>

<operation name="PPCalculate" position="4:10">
<operation name="BinaryOp" operation="x*">
<operation name="LeafAtomOp">

<operation name="PPVariable" descriptor="0"
variable-name="i" position="4:10"/>
</operation>

<operation name="LeafAtomOp">
<operation name="PPFunCall" id="0O"
function-name="local:fact" position="4:15">
<operation name="PPCalculate" position="4:26">
<operation name="BinaryOp" operation="-">
<operation name="LeafAtomOp">
<operation name="PPVariable" descriptor="0"
variable-name="i" position="4:26"/>
</operation>
<operation name="LeafAtomOp">
<operation name="PPConst" type="xs:integer"
value="1" position="4:31"/>
</operation>
</operation>
</operation>
</operation>
</operation>
</operation>
</operation>

</operation>
</function>

</prolog>

<query xmlns="http://www.modis.ispras.ru/sedna">

68

<operation name="PPQueryRoot">
<operation name="PPFunCall" id="0O"
function-name="local:fact" position="7:1">

<operation name="PPConst" type="xs:integer"
value="10" position="7:12"/>

</operation>
</operation>
</query>

Explain output consists of two parts (just like any XQuery query): prolog and
query body explanations. Prolog part includes complete information about all
declarations: namespaces, functions, global variables with complete physical plan
for each user defined function and global variable. Query body explanation part
describes physical tree of the query.

For each physical operation EXPLAIN returns: name of the operation (PPConst,
PPFunCall, etc), corresponding position in the source query (e.g. 4:31 means
that operation PPConst corresponds to the ’1’ atomic at the line 4, column 26).
Output may also contain additional information depending on the operation type
(for example, variable name for some PPVariable operations).

2.7.4 Profile Query
The profile statement has the following syntax:

PROFILE
{XQuery or Update statement to profile}

Fach query in Sedna is represented and executed internally as a tree of the physical
operations. With the help of PROFILE statement you can obtain detailed tree of
physical operation and execution time for each of them.

The following query illustrates PROFILE statement execution:
Query:

profile fn:doc(’TestSources/XMarkAuction.xml’)//
person[@id = "personO"]/name

Output:

<operation name="PPQueryRoot" time="13.426" calls="1">
<operation name="PPAxisChild" step="child: :element (name)"
time="13.426" calls="2">
<operation name="PPReturn" time="13.426" calls="2">

69

<operation name="PPAbsPath" root="document (auction)"
path="descendant-or-self::node()"
time="12.772" calls="85405"/>

<operation name="PPPredl" time="0.530" calls="85405">

<operation name="PPAxisChild" step="child::element (person)"
time="0.461" calls="86168">
<operation name="PPVariable" descr="0"
time="0.380" calls="170808"/>
</operation>

<operation name="PPE(QLGeneralComparison"
comparison="eq" time="0.013" calls="1528">

<operation name="PPAxisAttribute"
step="attribute::attribute(id)"
time="0.001" calls="1527">

<operation name="PPVariable" descr="1"
time="0.001" calls="1527"/>

</operation>
<operation name="PPConst"
type="xs:string" value="personO"

time="0.001" calls="1527"/>

</operation>
</operation>

</operation>
</operation>
</operation>

Profiling output consists of two parts (just like any XQuery query): prolog
and query body explanations. Prolog part includes complete profile information
for global variables and user defined functions. Query body profile part describes
physical tree of the query and provides execution time and number of calls for each
physical operation.

For each physical operation PROFILE returns: name of the operation (PPConst,
PPFunCall, etc), corresponding position in the source query (e.g. 4:31 means
that operation PPConst corresponds to the ’1’ atomic at the line 4, column 26),
execution time of this operation and number of calls. Output may also contain

70

additional information depending on the operation type (for example, variable
name for some PPVariable operations).

In above example you can see that PPAbsPath operation takes almost all time
(12.772 seconds of 13.426 total) and was called 12772 times. Profiling in this case
shows that // may be very hard to execute and it is much better to use "single”
XPath steps everywhere it is possible:

Query:

profile fn:doc(’TestSources/XMarkAuction.xml’)/
site/people/person[@id = "person0"]/name

Output:
<operation name="PPQueryRoot" time="0.018" calls="1">

<operation name="PPAxisChild" step="child::element (name)"
time="0.018" calls="2">

<operation name="PPReturn" time="0.018" calls="2">
<produces>
<variable descriptor="0"/>
</produces>

<operation name="PPAbsPath"
root="document (auction)"
path="child::element (site)/child: :element (people)"
time="0.001" calls="2"/>

<operation name="PPPredl" time="0.017" calls="2">
<produces>
<variable descriptor="1"/>
</produces>

<operation name="PPAxisChild" step="child::element (person)"
time="0.001" calls="765">

<operation name="PPVariable" descr="0"
time="0.000" calls="2"/>

</operation>

<operation name="PPE(QLGeneralComparison"
comparison="eq" time="0.013" calls="1528">

71

<operation name="PPAxisAttribute"
step="attribute: :attribute(id)"
time="0.005" calls="1527">

<operation name="PPVariable" descr="1"
time="0.003" calls="1527"/>

</operation>

<operation name="PPConst"
type="xs:string" value="person0O"
time="0.000" calls="1527"/>

</operation>
</operation>
</operation>
</operation>
</operation>

72

References

[1] “Sedna Administration Guide”, http://modis.ispras.ru/sedna/
adminguide/AdminGuide.html

[2] “XQuery 1.0 and XPath 2.0 Data Model”, W3C Recommendation, http://
www.w3.org/TR/xpath-datamodel/

[3] “XQuery 1.0: An XML Query Language”, W3C Recommendation, http://
www.w3.org/TR/xquery/

[4] “XQuery 1.0 and XPath 2.0 Functions and Operators”, W3C Recommenda-
tion, http://www.w3.org/TR/xpath-functions/

[56] “XSLT 2.0 and XQuery 1.0 Serialization”, W3C Recommendation, http://
www.w3.org/TR/xslt-xquery-serialization/

[6] Patrick Lehti. “Design and Implementation of a Data Manipulation Processor
for a XML Query Language”, http://www.lehti.de/beruf/diplomarbeit.
pdf

[7] “PCRE - Perl Compatible Regular Expressions”, http://www.pcre.org/

[8] Maxim Grinev, Andrey Fomichev, Sergey Kuznetsov, Kostantin Antipin,
Alexander Boldakov, Dmitry Lizorkin, Leonid Novak, Maria Rekouts, Peter
Pleshachkov. “Sedna: A Native XML DBMS”, http://www.modis.ispras.
ru/publications.htm

[9] Rekouts Maria. “Application Programming Interface for XML DBMS:
design and implementation proposal’, http://www.modis.ispras.ru/
publications.htm

[10] Noel Welsh, Francisco Solsona, Ian Glover. “SchemeUnit and SchemeQL: Two
little languages”, Scheme Workshop 2002, http://schematics.sourceforge.
net/schemeunit-schemeql.ps

[11] Oleg Kiselyov. “SXML Specification, Revision 3.0”, http://www.okmij.org/
ftp/Scheme/SXML.html

[12] William Clinger, R. Kent Dybvig, Matthew Flatt, and Marc Feeley. “SRFI-12:
Exception Handling”, http://srfi.schemers.org/srfi-12/srfi-12.html

[13] Felix L. Winkelmann. “Chicken — A practical and portable Scheme system”,
http://www.call-with-current-continuation.org

[14] Kirill Lisovsky, Dmitry Lizorkin. “XML Path Language (XPath) and its func-
tional implementation SXPath”, Russian Digital Libraries Journal , 2003,
Volume 6, Issue 4, http://www.elbib.ru/index.phtml?page=elbib/eng/
journal/2003/part4/LL

73

http://modis.ispras.ru/sedna/adminguide/AdminGuide.html
http://modis.ispras.ru/sedna/adminguide/AdminGuide.html
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.lehti.de/beruf/diplomarbeit.pdf
http://www.lehti.de/beruf/diplomarbeit.pdf
http://www.pcre.org/
http://www.modis.ispras.ru/publications.htm
http://www.modis.ispras.ru/publications.htm
http://www.modis.ispras.ru/publications.htm
http://www.modis.ispras.ru/publications.htm
http://schematics.sourceforge.net/schemeunit-schemeql.ps
http://schematics.sourceforge.net/schemeunit-schemeql.ps
http://www.okmij.org/ftp/Scheme/SXML.html
http://www.okmij.org/ftp/Scheme/SXML.html
http://srfi.schemers.org/srfi-12/srfi-12.html
http://www.call-with-current-continuation.org
http://www.elbib.ru/index.phtml?page=elbib/eng/journal/2003/part4/LL
http://www.elbib.ru/index.phtml?page=elbib/eng/journal/2003/part4/LL

[15] dtSearch Engine home page, http://www.dtsearch.com/PLF_engine_2.
html

[16] dtSearch Web Help http://support.dtsearch.com/webhelp/dtsearch

4

http://www.dtsearch.com/PLF_engine_2.html
http://www.dtsearch.com/PLF_engine_2.html
http://support.dtsearch.com/webhelp/dtsearch

	1 Client Application Programming Interfaces
	1.1 Java API
	1.1.1 Sessions
	1.1.2 Transactions Management
	1.1.3 Statements
	1.1.4 Results
	1.1.5 Exceptions
	1.1.6 Code Example

	1.2 C API
	1.2.1 Errors Handling
	1.2.2 Connecting to a Database
	1.2.3 Setting Session Options
	1.2.4 Transactions Management
	1.2.5 Getting Connection and Transaction Status
	1.2.6 Executing Queries and Updates
	1.2.7 Loading Data
	1.2.8 Example Code

	1.3 Scheme API
	1.3.1 Sessions
	1.3.2 Manage Transactions
	1.3.3 Executing Queries and Updates
	1.3.4 Bulk Load from Stream
	1.3.5 Higher-level Function for a Transaction
	1.3.6 Error handling
	1.3.7 Code Example

	2 Database Language
	2.1 XQuery Support
	2.2 XQuery Options and Extensions
	2.2.1 Controlling Serialization
	2.2.2 Value index-scan Functions
	2.2.3 Full-Text Search Functions
	2.2.4 SQL Connection
	2.2.5 External Functions
	2.2.6 Runtime Properties

	2.3 Update Language
	2.4 Bulk Load
	2.4.1 CDATA section preserving

	2.5 Data Definition Language
	2.5.1 Managing Standalone Documents
	2.5.2 Managing Collections
	2.5.3 Managing Value Indices
	2.5.4 Managing Full-Text Indices
	2.5.5 Managing Modules
	2.5.6 Retrieving Metadata

	2.6 XQuery Triggers
	2.6.1 Trigger Examples

	2.7 Debug and Profile Facilities
	2.7.1 Trace
	2.7.2 Debug Mode
	2.7.3 Explain Query
	2.7.4 Profile Query

